Combining molecular classification with clinicopathologic methods improves risk assessment and chooses therapies for endometrial cancer (EC). Detecting mismatch repair (MMR) deficiencies in EC is crucial for screening Lynch syndrome and identifying i...
Artificial intelligence makes strides in specialized diagnostics but faces challenges in complex clinical scenarios, such as rare disease diagnosis and emergency condition identification. To address these limitations, we develop Meta General Practiti...
Liver tumors, whether primary or metastatic, significantly impact the outcomes of patients with cancer. Accurate identification and quantification are crucial for effective patient management, including precise diagnosis, prognosis, and therapy evalu...
Large language models have shown efficacy across multiple medical tasks. However, their value in the assessment of longitudinal follow-up computed tomography (CT) images of patients with lung nodules is unclear. In this study, we evaluate the ability...
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common type of breast cancer, with continuous recurrence remaining an important clinical issue. Current relapse predictive models in H...
Inability to express the confidence level and detect unseen disease classes limits the clinical implementation of artificial intelligence in the real world. We develop a foundation model with uncertainty estimation (FMUE) to detect 16 retinal conditi...
Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framew...
We develop a machine learning (ML) model using electrocardiography (ECG) to predict myocardial blood flow reserve (MFR) and assess its prognostic value for major adverse cardiovascular events (MACEs). Using 3,639 ECG-positron emission tomography (PET...
Reliably detecting potentially misleading patterns in automated diagnostic assistance systems, such as those powered by artificial intelligence (AI), is crucial for instilling user trust and ensuring reliability. Current techniques fall short in visu...
Clinical studies investigating the benefits of beta-lactam therapeutic drug monitoring (TDM) among critically ill patients are hindered by small patient groups, variability between studies, patient heterogeneity, and inadequate use of TDM. Accordingl...