AI Medical Compendium Journal:
European radiology

Showing 11 to 20 of 621 articles

Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis.

European radiology
PURPOSE: The purpose of this study is to estimate the extent to which the implementation of deep learning reconstruction (DLR) may reduce the risk of radiation-induced cancer from CT examinations, utilizing real-world clinical data.

3D full-dose brain-PET volume recovery from low-dose data through deep learning: quantitative assessment and clinical evaluation.

European radiology
OBJECTIVES: Low-dose (LD) PET imaging would lead to reduced image quality and diagnostic efficacy. We propose a deep learning (DL) method to reduce radiotracer dosage for PET studies while maintaining diagnostic quality.

Artificial intelligence in respiratory pandemics-ready for disease X? A scoping review.

European radiology
OBJECTIVES: This study aims to identify repeated previous shortcomings in medical imaging data collection, curation, and AI-based analysis during the early phase of respiratory pandemics. Based on the results, it seeks to highlight essential steps fo...

Burnout crisis in Chinese radiology: will artificial intelligence help?

European radiology
OBJECTIVES: To assess the correlation between the use of artificial intelligence (AI) software and burnout in the radiology departments of hospitals in China.

Unbiased and reproducible liver MRI-PDFF estimation using a scan protocol-informed deep learning method.

European radiology
OBJECTIVE: To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).

A critical comparative study of the performance of three AI-assisted programs for bone age determination.

European radiology
OBJECTIVES: To date, AI-supported programs for bone age (BA) determination for medical use in Europe have almost only been validated separately, according to Greulich and Pyle (G&P). Therefore, the current study aimed to compare the performance of th...

Automated anonymization of radiology reports: comparison of publicly available natural language processing and large language models.

European radiology
PURPOSE: Medical reports, governed by HIPAA regulations, contain personal health information (PHI), restricting secondary data use. Utilizing natural language processing (NLP) and large language models (LLM), we sought to employ publicly available me...

Using interpretable deep learning radiomics model to diagnose and predict progression of early AD disease spectrum: a preliminary [F]FDG PET study.

European radiology
OBJECTIVES: In this study, we propose an interpretable deep learning radiomics (IDLR) model based on [F]FDG PET images to diagnose the clinical spectrum of Alzheimer's disease (AD) and predict the progression from mild cognitive impairment (MCI) to A...