AIMC Topic: Adenocarcinoma of Lung

Clear Filters Showing 51 to 60 of 179 articles

Integrated multi-omics analysis and machine learning to refine molecular subtypes, prognosis, and immunotherapy in lung adenocarcinoma.

Functional & integrative genomics
Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 1...

Res-TransNet: A Hybrid deep Learning Network for Predicting Pathological Subtypes of lung Adenocarcinoma in CT Images.

Journal of imaging informatics in medicine
This study aims to develop a CT-based hybrid deep learning network to predict pathological subtypes of early-stage lung adenocarcinoma by integrating residual network (ResNet) with Vision Transformer (ViT). A total of 1411 pathologically confirmed gr...

Developing a prognostic model using machine learning for disulfidptosis related lncRNA in lung adenocarcinoma.

Scientific reports
Disulfidptosis represents a novel cell death mechanism triggered by disulfide stress, with potential implications for advancements in cancer treatments. Although emerging evidence highlights the critical regulatory roles of long non-coding RNAs (lncR...

A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma.

BMC medical imaging
OBJECTIVES: At present, there are many limitations in the evaluation of lymph node metastasis of lung adenocarcinoma. Currently, there is a demand for a safe and accurate method to predict lymph node metastasis of lung cancer. In this study, radiomic...

Machine learning-based integration develops an immunogenic cell death-derived lncRNA signature for predicting prognosis and immunotherapy response in lung adenocarcinoma.

Scientific reports
Accumulating evidence demonstrates that lncRNAs are involved in the regulation of the immune microenvironment and early tumor development. Immunogenic cell death occurs mainly through the release or increase of tumor-associated antigen and tumor-spec...

Prognostic model incorporating immune checkpoint genes to predict the immunotherapy efficacy for lung adenocarcinoma: a cohort study integrating machine learning algorithms.

Immunologic research
This study aimed to develop and validate a nomogram based on immune checkpoint genes (ICGs) for predicting prognosis and immune checkpoint blockade (ICB) efficacy in lung adenocarcinoma (LUAD) patients. A total of 385 LUAD patients from the TCGA data...

Machine-learning developed an iron, copper, and sulfur-metabolism associated signature predicts lung adenocarcinoma prognosis and therapy response.

Respiratory research
BACKGROUND: Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has combine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures.

AI-driven Characterization of Solid Pulmonary Nodules on CT Imaging for Enhanced Malignancy Prediction in Small-sized Lung Adenocarcinoma.

Clinical lung cancer
OBJECTIVES: Distinguishing solid nodules from nodules with ground-glass lesions in lung cancer is a critical diagnostic challenge, especially for tumors ≤2 cm. Human assessment of these nodules is associated with high inter-observer variability, whic...

A dual data stream hybrid neural network for classifying pathological images of lung adenocarcinoma.

Computers in biology and medicine
Lung cancer has seriously threatened human health due to its high lethality and morbidity. Lung adenocarcinoma, in particular, is one of the most common subtypes of lung cancer. Pathological diagnosis is regarded as the gold standard for cancer diagn...