AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adenocarcinoma

Showing 1 to 10 of 226 articles

Clear Filters

Hepatoid adenocarcinoma of the stomach with ideal response to neoadjuvant chemo-immunotherapy: a case report.

Frontiers in immunology
Hepatoid adenocarcinoma of the stomach (HAS) is a rare subtype of gastric cancer characterized by histological features resembling hepatocellular carcinoma. Surgical intervention remains the preferred treatment modality for eligible patients. However...

Evolutionary learning-derived lncRNA signature with biomarker discovery for predicting stage of colon adenocarcinoma.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
In recent years, long non-coding RNAs (lncRNAs) have emerged as potential regulators of biological processes and genes, with the potential to serve as valuable biomarkers for cancer diagnosis and prognosis prediction. This work proposes an evolutiona...

Integrating multiomics analysis and machine learning to refine the molecular subtyping and prognostic analysis of stomach adenocarcinoma.

Scientific reports
Stomach adenocarcinoma (STAD) is a common malignancy with high heterogeneity and a lack of highly precise treatment options. We downloaded the multiomics data of STAD patients in The Cancer Genome Atlas (TCGA)-STAD cohort, which included mRNA, microR...

Machine learning classification and biochemical characteristics in the real-time diagnosis of gastric adenocarcinoma using Raman spectroscopy.

Scientific reports
This study aimed to identify biomolecular differences between benign gastric tissues (gastritis/intestinal metaplasia) and gastric adenocarcinoma and to evaluate the diagnostic power of Raman spectroscopy-based machine learning in gastric adenocarcin...

Assessment of different U-Net backbones in segmenting colorectal adenocarcinoma from H&E histopathology.

Pathology, research and practice
Adenocarcinoma, the most prevalent type of colorectal cancer, makes up roughly 95 % of all cases and is associated with a notably high mortality rate. Owing to the various risk factors which might include personal choices and habits or genetic factor...

Automated classification of tertiary lymphoid structures in colorectal cancer using TLS-PAT artificial intelligence tool.

Scientific reports
Colorectal cancer (CRC) ranks as the third most common and second deadliest cancer worldwide. The immune system, particularly tertiary lymphoid structures (TLS), significantly influences CRC progression and prognosis. TLS maturation, especially in th...

Machine learning prediction of overall survival in prostate adenocarcinoma using ensemble techniques.

Computers in biology and medicine
Prostate adenocarcinoma (PAC) is a complex and common cancer in males and is one of the leading causes of cancer-related death globally. PAC is a multifaceted disease that encompasses different subtypes, including acinar and ductal adenocarcinoma, sm...

Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer.

Nature communications
Self-supervised learning (SSL) automates the extraction and interpretation of histopathology features on unannotated hematoxylin-eosin-stained whole slide images (WSIs). We train an SSL Barlow Twins encoder on 435 colon adenocarcinoma WSIs from The C...