AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Aged, 80 and over

Showing 131 to 140 of 3143 articles

Clear Filters

Machine learning to detect Alzheimer's disease with data on drugs and diagnoses.

The journal of prevention of Alzheimer's disease
BACKGROUND: Integrating machine learning with medical records offers potential for early detection of Alzheimer's disease (AD), enabling timely interventions.

Comparison of Deep Learning and Traditional Machine Learning Models for Predicting Mild Cognitive Impairment Using Plasma Proteomic Biomarkers.

International journal of molecular sciences
Mild cognitive impairment (MCI) is a clinical condition characterized by a decline in cognitive ability and progression of cognitive impairment. It is often considered a transitional stage between normal aging and Alzheimer's disease (AD). This study...

An explainable machine learning-based prediction model for sarcopenia in elderly Chinese people with knee osteoarthritis.

Aging clinical and experimental research
BACKGROUND: Sarcopenia is an age-related progressive skeletal muscle disease that leads to loss of muscle mass and function, resulting in adverse health outcomes such as falls, functional decline, and death. Knee osteoarthritis (KOA) is a common chro...

Developing an interpretable machine learning model for screening depression in older adults with functional disability.

Journal of affective disorders
This study utilized data from the 2020 wave of the China Health and Retirement Longitudinal Study database, selecting 4322 participants aged 60 and above as the study sample. Important predictors of depression in older adults with functional disabili...

Using Machine Learning to Predict Outcomes Following Thoracic and Complex Endovascular Aortic Aneurysm Repair.

Journal of the American Heart Association
BACKGROUND: Thoracic endovascular aortic repair (TEVAR) and complex endovascular aneurysm repair (EVAR) are complex procedures that carry a significant risk of complications. While risk prediction tools can aid in clinical decision making, they remai...

Development and Feasibility Study of HOPE Model for Prediction of Depression Among Older Adults Using Wi-Fi-based Motion Sensor Data: Machine Learning Study.

JMIR aging
BACKGROUND: Depression, characterized by persistent sadness and loss of interest in daily activities, greatly reduces quality of life. Early detection is vital for effective treatment and intervention. While many studies use wearable devices to class...

Applying machine learning to high-dimensional proteomics datasets for the identification of Alzheimer's disease biomarkers.

Fluids and barriers of the CNS
PURPOSE: This study explores the application of machine learning to high-dimensional proteomics datasets for identifying Alzheimer's disease (AD) biomarkers. AD, a neurodegenerative disorder affecting millions worldwide, necessitates early and accura...

Diffusion-Weighted Imaging-Based Radiomics Features and Machine Learning Method to Predict the 90-Day Prognosis in Patients With Acute Ischemic Stroke.

The neurologist
OBJECTIVES: The evaluation of the prognosis of patients with acute ischemic stroke (AIS) is of great significance in clinical practice. We aim to evaluate the feasibility and effectiveness of diffusion-weighted imaging (DWI) image-based radiomics fea...