AIMC Topic: Aged

Clear Filters Showing 1221 to 1230 of 12555 articles

An interpretable machine learning approach for detecting psoriatic arthritis in a UK primary care psoriasis cohort using electronic health records from the Clinical Practice Research Datalink.

Annals of the rheumatic diseases
OBJECTIVES: Develop an interpretable machine learning model to detect patients with newly diagnosed psoriatic arthritis (PsA) in a cohort of psoriasis patients and identify important clinical indicators of PsA in primary care.

Artificial intelligence-driven 3D MRI of lumbosacral nerve root anomalies: accuracy, incidence, and clinical utility.

Neuroradiology
PURPOSE: Lumbosacral nerve root anomalies are relatively rare but can be a risk factor for intraoperative nerve injury. However, it is often difficult to evaluate them with preoperative imaging. We developed a software that automatically generates th...

Diffusion-Weighted Imaging-Based Radiomics Features and Machine Learning Method to Predict the 90-Day Prognosis in Patients With Acute Ischemic Stroke.

The neurologist
OBJECTIVES: The evaluation of the prognosis of patients with acute ischemic stroke (AIS) is of great significance in clinical practice. We aim to evaluate the feasibility and effectiveness of diffusion-weighted imaging (DWI) image-based radiomics fea...

Pre-trained convolutional neural networks identify Parkinson's disease from spectrogram images of voice samples.

Scientific reports
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the conve...

Predicting responsiveness to fixed-dose methylene blue in adult patients with septic shock using interpretable machine learning: a retrospective study.

Scientific reports
This study aimed to develop an interpretable machine learning model to predict methylene blue (MB) responsiveness in adult patients with refractory septic shock and to identify key factors influencing MB responsiveness using the SHapley Additive exPl...

Development and multi-center cross-setting validation of an explainable prediction model for sarcopenic obesity: a machine learning approach based on readily available clinical features.

Aging clinical and experimental research
OBJECTIVES: Sarcopenic obesity (SO), characterized by the coexistence of obesity and sarcopenia, is an increasingly prevalent condition in aging populations, associated with numerous adverse health outcomes. We aimed to identify and validate an expla...

Machine-learning models for the prediction of ideal surgical outcomes in patients with adult spinal deformity.

The bone & joint journal
AIMS: Adult spinal deformity (ASD) surgery can reduce pain and disability. However, the actual surgical efficacy of ASD in doing so is far from desirable, with frequent complications and limited improvement in quality of life. The accurate prediction...

Artificial intelligence-assisted precise preoperative prediction of lateral cervical lymph nodes metastasis in papillary thyroid carcinoma via a clinical-CT radiomic combined model.

International journal of surgery (London, England)
OBJECTIVES: This study aimed to develop an artificial intelligence-assisted model for the preoperative prediction of lateral cervical lymph node metastasis (LCLNM) in papillary thyroid carcinoma (PTC) using computed tomography (CT) radiomics, providi...

Clinical value of aortic arch morphology in transfemoral TAVR: artificial intelligence evaluation.

International journal of surgery (London, England)
BACKGROUND: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study w...

Metastatic Lung Lesion Changes in Follow-up Chest CT: The Advantage of Deep Learning Simultaneous Analysis of Prior and Current Scans With SimU-Net.

Journal of thoracic imaging
PURPOSE: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for ...