AIMC Topic: Aged

Clear Filters Showing 3651 to 3660 of 13235 articles

Screening Patient Misidentification Errors Using a Deep Learning Model of Chest Radiography: A Seven Reader Study.

Journal of imaging informatics in medicine
We aimed to evaluate the ability of deep learning (DL) models to identify patients from a paired chest radiograph (CXR) and compare their performance with that of human experts. In this retrospective study, patient identification DL models were devel...

Using machine learning methods to investigate the impact of age on the causes of death in patients with early intrahepatic cholangiocarcinoma who underwent surgery.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
BACKGROUND: The impact of age on the causes of death (CODs) in patients with early-stage intrahepatic cholangiocarcinoma (ICC) who had undergone surgery was analyzed in this study.

Machine learning algorithms to predict mild cognitive impairment in older adults in China: A cross-sectional study.

Journal of affective disorders
OBJECTIVE: This study aimed to explore the predictive value of machine learning (ML) in mild cognitive impairment (MCI) among older adults in China and to identify important factors causing MCI.

Cognitive activity analysis of Parkinson's patients using artificial intelligence techniques.

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
PURPOSE: The development of modern Artificial Intelligence (AI) based models for the early diagnosis of Parkinson's disease (PD) has been gaining deep attention by researchers recently. In particular, the use of different types of datasets (voice, ha...

Prediction of individual weight loss using supervised learning: findings from the CALERIE 2 study.

The American journal of clinical nutrition
BACKGROUND: Predicting individual weight loss (WL) responses to lifestyle interventions is challenging but might help practitioners and clinicians select the most promising approach for each individual.

Machine learning-based classification of Parkinson's disease using acoustic features: Insights from multilingual speech tasks.

Computers in biology and medicine
This study advances the automation of Parkinson's disease (PD) diagnosis by analyzing speech characteristics, leveraging a comprehensive approach that integrates a voting-based machine learning model. Given the growing prevalence of PD, especially am...

Renal Cell Carcinoma Discrimination through Attenuated Total Reflection Fourier Transform Infrared Spectroscopy of Dried Human Urine and Machine Learning Techniques.

International journal of molecular sciences
Renal cell carcinoma (RCC) is the sixth most common cancer in men and is often asymptomatic, leading to incidental detection in advanced disease stages that are associated with aggressive histology and poorer outcomes. Various cancer biomarkers are f...

Logistic regression analysis and machine learning for predicting post-stroke gait independence: a retrospective study.

Scientific reports
This study investigated whether machine learning (ML) has better predictive accuracy than logistic regression analysis (LR) for gait independence at discharge in subacute stroke patients (n = 843) who could not walk independently at admission. We dev...

Multimodal radiomics-based methods using deep learning for prediction of brain metastasis in non-small cell lung cancer withF-FDG PET/CT images.

Biomedical physics & engineering express
. Approximately 57% of non-small cell lung cancer (NSCLC) patients face a 20% risk of brain metastases (BMs). The delivery of drugs to the central nervous system is challenging because of the blood-brain barrier, leading to a relatively poor prognosi...

Development and Validation of a Deep Learning Model for Prediction of Adult Physiological Deterioration.

Critical care explorations
BACKGROUND: Prediction-based strategies for physiologic deterioration offer the potential for earlier clinical interventions that improve patient outcomes. Current strategies are limited because they operate on inconsistent definitions of deteriorati...