AIMC Topic: Aged

Clear Filters Showing 4211 to 4220 of 13246 articles

GWO+RuleFit: rule-based explainable machine-learning combined with heuristics to predict mid-treatment FDG PET response to chemoradiation for locally advanced non-small cell lung cancer.

Physics in medicine and biology
Vital rules learned from fluorodeoxyglucose positron emission tomography (FDG-PET) radiomics of tumor subregional response can provide clinical decision support for precise treatment adaptation. We combined a rule-based machine learning (ML) model (R...

Developing a privacy-preserving deep learning model for glaucoma detection: a multicentre study with federated learning.

The British journal of ophthalmology
BACKGROUND: Deep learning (DL) is promising to detect glaucoma. However, patients' privacy and data security are major concerns when pooling all data for model development. We developed a privacy-preserving DL model using the federated learning (FL) ...

Prediction of visual field progression with serial optic disc photographs using deep learning.

The British journal of ophthalmology
AIM: We tested the hypothesis that visual field (VF) progression can be predicted with a deep learning model based on longitudinal pairs of optic disc photographs (ODP) acquired at earlier time points during follow-up.

A stacking ensemble model for predicting the occurrence of carotid atherosclerosis.

Frontiers in endocrinology
BACKGROUND: Carotid atherosclerosis (CAS) is a significant risk factor for cardio-cerebrovascular events. The objective of this study is to employ stacking ensemble machine learning techniques to enhance the prediction of CAS occurrence, incorporatin...

Deep Learning-Enabled Vasculometry Depicts Phased Lesion Patterns in High Myopia Progression.

Asia-Pacific journal of ophthalmology (Philadelphia, Pa.)
PURPOSE: To investigate the potential phases in myopic retinal vascular alterations for further elucidating the mechanisms underlying the progression of high myopia (HM).

Risk prediction of kalaemia disturbance and acute kidney injury after total knee arthroplasty: use of a machine learning algorithm.

Orthopaedics & traumatology, surgery & research : OTSR
INTRODUCTION: Total knee arthroplasty (TKA) is a procedure associated with risks of electrolyte and kidney function disorders, which are rare but can lead to serious complications if not correctly identified. A routine check-up is very often carried ...

Development and Validation of a Biparametric MRI Deep Learning Radiomics Model with Clinical Characteristics for Predicting Perineural Invasion in Patients with Prostate Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Perineural invasion (PNI) is an important prognostic biomarker for prostate cancer (PCa). This study aimed to develop and validate a predictive model integrating biparametric MRI-based deep learning radiomics and clinical ch...

Biomarker profiling and integrating heterogeneous models for enhanced multi-grade breast cancer prognostication.

Computer methods and programs in biomedicine
BACKGROUND: Breast cancer remains a leading cause of female mortality worldwide, exacerbated by limited awareness, inadequate screening resources, and treatment options. Accurate and early diagnosis is crucial for improving survival rates and effecti...

Brain age prediction using interpretable multi-feature-based convolutional neural network in mild traumatic brain injury.

NeuroImage
BACKGROUND: Convolutional neural network (CNN) can capture the structural features changes of brain aging based on MRI, thus predict brain age in healthy individuals accurately. However, most studies use single feature to predict brain age in healthy...

Interpretable machine learning models for detecting peripheral neuropathy and lower extremity arterial disease in diabetics: an analysis of critical shared and unique risk factors.

BMC medical informatics and decision making
BACKGROUND: Diabetic peripheral neuropathy (DPN) and lower extremity arterial disease (LEAD) are significant contributors to diabetic foot ulcers (DFUs), which severely affect patients' quality of life. This study aimed to develop machine learning (M...