AIMC Topic: Aged

Clear Filters Showing 561 to 570 of 12457 articles

Artificial intelligence models utilize lifestyle factors to predict dry eye related outcomes.

Scientific reports
The purpose of this study is to examine and interpret machine learning models that predict dry eye (DE)-related clinical signs, subjective symptoms, and clinician diagnoses by heavily weighting lifestyle factors in the predictions. Machine learning m...

Predicting mortality and risk factors of sepsis related ARDS using machine learning models.

Scientific reports
Sepsis related acute respiratory distress syndrome (ARDS) is a common and serious disease in clinic. Accurate prediction of in-hospital mortality of patients is crucial to optimize treatment and improve prognosis under the new global definition of AR...

Lipidomic analysis coupled with machine learning identifies unique urinary lipid signatures in patients with interstitial cystitis/bladder pain syndrome.

World journal of urology
PURPOSE: To identify biomarkers for diagnosis and classification of interstitial cystitis/bladder pain syndrome (IC/BPS) by urinary lipidomics coupled with machine learning.

Daily Automated Prediction of Delirium Risk in Hospitalized Patients: Model Development and Validation.

JMIR medical informatics
BACKGROUND: Delirium is common in hospitalized patients and is correlated with increased morbidity and mortality. Despite this, delirium is underdiagnosed, and many institutions do not have sufficient resources to consistently apply effective screeni...

Decoding Recurrence in Early-Stage and Locoregionally Advanced Non-Small Cell Lung Cancer: Insights From Electronic Health Records and Natural Language Processing.

JCO clinical cancer informatics
PURPOSE: Recurrences after curative resection in early-stage and locoregionally advanced non-small cell lung cancer (NSCLC) are common, necessitating a nuanced understanding of associated risk factors. This study aimed to establish a natural language...

Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes.

Epilepsy & behavior : E&B
BACKGROUND & OBJECTIVE: Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we levera...

Performance and hypothetical clinical impact of an mNGS-based machine learning model for antimicrobial susceptibility prediction of five ESKAPEE bacteria.

Microbiology spectrum
UNLABELLED: Antimicrobial resistance is an escalating global health crisis, underscoring the urgent need for timely and targeted therapies to ensure effective clinical treatment. We developed a machine learning model based on metagenomic next-generat...

Assessing the association of multi-environmental chemical exposures on metabolic syndrome: A machine learning approach.

Environment international
Metabolic syndrome (MetS) is a major global public health concern due to its rising prevalence and association with increased risks of cardiovascular disease and type 2 diabetes. Emerging evidence suggests that environmental chemical exposures may pl...

Classification of Grades of Subchondral Sclerosis from Knee Radiographic Images Using Artificial Intelligence.

Sensors (Basel, Switzerland)
Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people worldwide. Subchondral sclerosis is a key indicator of OA. Currently, the diagnosis of subchondral sclerosis is primarily based on radiographic images; however, r...