AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Anti-Bacterial Agents

Showing 81 to 90 of 566 articles

Clear Filters

A novel approach to antimicrobial resistance: Machine learning predictions for carbapenem-resistant Klebsiella in intensive care units.

International journal of medical informatics
This study was conducted at Kocaeli University Hospital in Turkey and aimed to predict carbapenem-resistant Klebsiella pneumoniae infection in intensive care units using the Extreme Gradient Boosting (XGBoost) algorithm, a form of artificial intellig...

Novel active Trp- and Arg-rich antimicrobial peptides with high solubility and low red blood cell toxicity designed using machine learning tools.

International journal of antimicrobial agents
BACKGROUND: Given the rising number of multidrug-resistant (MDR) bacteria, there is a need to design synthetic antimicrobial peptides (AMPs) that are highly active, non-hemolytic, and highly soluble. Machine learning tools allow the straightforward i...

Artificial intelligence-driven quantification of antibiotic-resistant Bacteria in food by color-encoded multiplex hydrogel digital LAMP.

Food chemistry
Antibiotic-resistant bacteria pose considerable risks to global health, particularly through transmission in the food chain. Herein, we developed the artificial intelligence-driven quantification of antibiotic-resistant bacteria in food using a color...

A supervised machine learning tool to predict the bactericidal efficiency of nanostructured surface.

Journal of nanobiotechnology
The emergence and rapid spread of multidrug-resistant bacterial strains is a growing concern of public health. Inspired by the natural bactericidal surfaces of lotus leaves and shark skin, increasing attention has been focused on the use of mechano-b...

Graphene FET biochip on PCB reinforced by machine learning for ultrasensitive parallel detection of multiple antibiotics in water.

Biosensors & bioelectronics
Antibiotics like Ciprofloxacin (Cfx), tetracycline (Tet) and Tobramycin (Tob) are commonly used against a broad-spectrum of bacterial infection. Recent surge in their uptake through the presence of their residues in environmental water has been linke...

Integrating machine learning and multitargeted drug design to combat antimicrobial resistance: a systematic review.

Journal of drug targeting
Antimicrobial resistance (AMR) is a critical global health challenge, undermining the efficacy of antimicrobial drugs against microorganisms like bacteria, fungi and viruses. Multidrug resistance (MDR) arises when microorganisms become resistant to m...

Mining biology for antibiotic discovery.

PLoS biology
The rise of antibiotic resistance calls for innovative solutions. The realization that biology can be mined digitally using artificial intelligence has revealed a new paradigm for antibiotic discovery, offering hope in the fight against superbugs.

Neural network-based predictions of antimicrobial resistance phenotypes in multidrug-resistant from whole genome sequencing and gene expression.

Antimicrobial agents and chemotherapy
Whole genome sequencing (WGS) potentially represents a rapid approach for antimicrobial resistance genotype-to-phenotype prediction. However, the challenge still exists to predict fully minimum inhibitory concentrations (MICs) and antimicrobial susce...

An antimicrobial drug recommender system using MALDI-TOF MS and dual-branch neural networks.

eLife
Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely...

Based on T.E.S.T toxicity prediction and machine learning to forecast toxicity dynamics in the photocatalytic degradation of tetracycline.

Physical chemistry chemical physics : PCCP
The integration of photocatalysis and biological treatment provides an effective strategy for controlling antibiotic contamination, which requires precise monitoring of toxicity changes during the photocatalytic process. In this study, nanoscale TiO ...