BACKGROUND & AIMS: One-fourth of colorectal neoplasias are missed during screening colonoscopies; these can develop into colorectal cancer (CRC). Deep learning systems allow for real-time computer-aided detection (CADe) of polyps with high accuracy. ...
AJR. American journal of roentgenology
Apr 22, 2020
The objective of this study was to assess the impact of artificial intelligence (AI)-based decision support (DS) on breast ultrasound (US) lesion assessment. A multicenter retrospective review of 900 breast lesions (470/900 [52.2%] benign; 430/900 ...
Terminal duct lobular unit (TDLU) involution is the regression of milk-producing structures in the breast. Women with less TDLU involution are more likely to develop breast cancer. A major bottleneck in studying TDLU involution in large cohort studie...
Accurate detection and quantification of hepatic fibrosis remain essential for assessing the severity of non-alcoholic fatty liver disease (NAFLD) and its response to therapy in clinical practice and research studies. Our aim was to develop an integr...
OBJECTIVES: To compare the diagnostic accuracy of texture analysis (TA)-derived parameters combined with machine learning (ML) of non-contrast-enhanced T1w and T2w fat-saturated (fs) images with MR elastography (MRE) for liver fibrosis quantification...
Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Mar 26, 2020
A deep learning-based image analysis could improve diagnostic accuracy and efficiency in pathology work. Recently, we proposed a deep learning-based detection algorithm for C4d immunostaining in renal allografts. The objective of this study is to ass...
BACKGROUND: Skin fibrosis is the clinical hallmark of systemic sclerosis (SSc), where collagen deposition and remodeling of the dermis occur over time. The most widely used outcome measure in SSc clinical trials is the modified Rodnan skin score (mRS...