Cervical cancer, arising from the cells of the cervix, the lower segment of the uterus connected to the vagina-poses a significant health threat. The microscopic examination of cervical cells using Pap smear techniques plays a crucial role in identif...
PURPOSE: To develop MRI-based deep learning (DL) models for distinguishing sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC) and olfactory neuroblastoma (ONB) and to evaluate whether the DL models could improve the diagnostic pe...
PURPOSE: To develop and validate a deep learning (DL) model to differentiate ocular surface squamous neoplasia (OSSN) from pterygium and pinguecula using high-resolution anterior segment optical coherence tomography (AS-OCT).
INTRODUCTION: Oral cancer, especially oral squamous cell carcinoma (OSCC), is a global health challenge due to factors such as late detection and high mortality rates. Early detection is essential through monitoring by healthcare professionals. Cytop...
Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC gr...
Oral cancer detection is based on biopsy histopathology, however with digital microscopy imaging technology there is real potential for rapid multi-site imaging and simultaneous diagnostic analysis. Fifty-nine patients with oral mucosal abnormalities...
Classification of adenocarcinoma (AC) and squamous cell carcinoma (SCC) poses significant challenges for cytopathologists, often necessitating clinical tests and biopsies that delay treatment initiation. To address this, we developed a machine learni...
Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
Jan 14, 2025
PURPOSE: Oral mucositis (OM) reflects a complex interplay of several risk factors. Machine learning (ML) is a promising frontier in science, capable of processing dense information. This study aims to assess the performance of ML in predicting OM ris...
BACKGROUND: Cervical lymph node metastasis (LNM) is a well-established poor prognosticator of oral squamous cell carcinoma (OSCC), in which occult metastasis is a subtype that makes prediction challenging. Here, we developed and validated a deep lear...
OBJECTIVE: To compare iodine density (ID) and contrast-enhanced attenuation value (CEAV) from dual-layer spectral computed tomography (DLSCT) scans of lymphomatous, metastatic squamous cell carcinoma (SCCA), and normal cervical lymph nodes.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.