PURPOSE: Managing children undergoing cardiac surgery with cardiopulmonary bypass (CPB) presents a significant challenge for anesthesiologists. Machine Learning (ML)-assisted tools have the potential to enhance the recognition of patients at risk of ...
BACKGROUND: The prevalence and severity of pediatric Mycoplasma pneumoniae pneumonia (MPP) poses a significant threat to the health and lives of children. In this study, we aim to systematically evaluate the value of routine blood parameters in predi...
PURPOSE: To evaluate the diagnostic performance of an Artificial Intelligence (AI) algorithm, previously trained using both adult and pediatric patients, for the detection of acute appendicular fractures in the pediatric population on conventional X-...
BACKGROUND: Ventricular volumetry using a short-axis stack of two-dimensional (D) cine balanced steady-state free precession (bSSFP) sequences is crucial in any cardiac magnetic resonance imaging (MRI) examination. This task becomes particularly chal...
The prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP) remains a clinically significant challenge. This study aimed to develop an early predictive model utilizing artificial intelligence (AI)-derived quantitative assessment of lung lesio...
OBJECTIVES: In the interpretation of panoramic radiographs (PRs), the identification and numbering of teeth is an important part of the correct diagnosis. This study evaluates the effectiveness of YOLO-v5 in the automatic detection, segmentation, and...
Symptoms of Acute Respiratory infections (ARIs) among under-five children are a global health challenge. We aimed to train and evaluate ten machine learning (ML) classification approaches in predicting symptoms of ARIs reported by mothers among child...
BACKGROUND: Pediatric stroke is an important cause of morbidity in children. Although research can be challenging, large amounts of data have been captured through collaborative efforts in the International Pediatric Stroke Study (IPSS). This study e...
BACKGROUND: Pediatric asthma is a heterogeneous disease; however, current characterizations of its subtypes are limited. Machine learning (ML) methods are well-suited for identifying subtypes. In particular, deep neural networks can learn patient rep...
PURPOSE: To assess image quality and diagnostic confidence of 3D T1-weighted spoiled gradient echo (SPGR) MRI using artificial intelligence (AI) reconstruction.