AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cohort Studies

Showing 11 to 20 of 1108 articles

Clear Filters

Machine learning-based Diagnostic model for determining the etiology of pleural effusion using Age, ADA and LDH.

Respiratory research
BACKGROUND: Classification of the etiologies of pleural effusion is a critical challenge in clinical practice. Traditional diagnostic methods rely on a simple cut-off method based on the laboratory tests. However, machine learning (ML) offers a novel...

Tlalpan 2020 Case Study: Enhancing Uric Acid Level Prediction with Machine Learning Regression and Cross-Feature Selection.

Nutrients
Uric acid is a key metabolic byproduct of purine degradation and plays a dual role in human health. At physiological levels, it acts as an antioxidant, protecting against oxidative stress. However, excessive uric acid can lead to hyperuricemia, cont...

Proposed Comprehensive Methodology Integrated with Explainable Artificial Intelligence for Prediction of Possible Biomarkers in Metabolomics Panel of Plasma Samples for Breast Cancer Detection.

Medicina (Kaunas, Lithuania)
: Breast cancer (BC) is the most common type of cancer in women, accounting for more than 30% of new female cancers each year. Although various treatments are available for BC, most cancer-related deaths are due to incurable metastases. Therefore, th...

Predicting 30-day survival after in-hospital cardiac arrest: a nationwide cohort study using machine learning and SHAP analysis.

BMJ open
OBJECTIVE: In-hospital cardiac arrest (IHCA) presents a critical challenge with low survival rates and limited prediction tools. Despite advances in resuscitation, predicting 30-day survival remains difficult, and current methods lack interpretabilit...

Elucidating predictors of preoperative acute heart failure in older people with hip fractures through machine learning and SHAP analysis: a retrospective cohort study.

BMC geriatrics
BACKGROUND: Acute heart failure (AHF) has become a significant challenge in older people with hip fractures. Timely identification and assessment of preoperative AHF have become key factors in reducing surgical risks and improving outcomes.

Association between the (neutrophil + monocyte)/albumin ratio and all-cause mortality in sepsis patients: a retrospective cohort study and predictive model establishment according to machine learning.

BMC infectious diseases
INTRODUCTION: Sepsis is a life-threatening condition characterized by widespread inflammatory response syndrome in the body resulting from infection. Previous studies have demonstrated that some inflammatory factors or nutritional elements contribute...

Systematic Identification of Caregivers of Patients Living With Dementia in the Electronic Health Record: Known Contacts and Natural Language Processing Cohort Study.

Journal of medical Internet research
BACKGROUND: Systemically identifying caregivers in the electronic health record (EHR) is a critical step for delivering patient-centered care, enhancing care coordination, and advancing research and population health efforts in caregiving. Despite EH...

Machine Learning Predicts Risk of Falls in Parkison's Disease Patients in a Multicenter Observational Study.

European journal of neurology
BACKGROUND: Postural instability and gait difficulties are key symptoms of Parkinson's disease (PD), elevating the risk of falls substantially. Falls afflict 35% to 90% of PD patients, representing a major challenge in managing the condition. Accurat...