AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cohort Studies

Showing 31 to 40 of 1108 articles

Clear Filters

Predicting rheumatoid arthritis progression from seronegative undifferentiated arthritis using machine learning: a deep learning model trained on the KURAMA cohort and externally validated with the ANSWER cohort.

Arthritis research & therapy
BACKGROUND: Undifferentiated arthritis (UA) often develops into rheumatoid arthritis (RA), but predicting disease progression from seronegative UA remains challenging because seronegative RA often does not meet the classification criteria. This study...

Development and validation of pan-cancer lesion segmentation AI-model for whole-body 18F-FDG PET/CT in diverse clinical cohorts.

Computers in biology and medicine
BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3DF-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site.

Predicting amyloid beta accumulation in cognitively unimpaired older adults: Cognitive assessments provide no additional utility beyond demographic and genetic factors.

Alzheimer's & dementia : the journal of the Alzheimer's Association
BACKGROUND: Integrating non-invasive measures to estimate abnormal amyloid beta accumulation (Aβ+) is key to developing a screening tool for preclinical Alzheimer's disease (AD). The predictive capability of standard neuropsychological tests in estim...

Predicting low birth weight risks in pregnant women in Brazil using machine learning algorithms: data from the Araraquara cohort study.

BMC pregnancy and childbirth
BACKGROUND: Low birth weight (LBW) is a critical factor linked to neonatal morbidity and mortality. Early prediction is essential for timely interventions. This study aimed to develop and evaluate predictive models for LBW using machine learning algo...

Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals.

Nature communications
Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and v...

Personalized prediction of psoriasis relapse post-biologic discontinuation: a machine learning-driven population cohort study.

The Journal of dermatological treatment
BACKGROUND: Identifying the risk of psoriasis relapse after discontinuing biologics can help optimize treatment strategies, potentially reducing relapse rates and alleviating the burden of disease management.

Identifying Data-Driven Clinical Subgroups for Cervical Cancer Prevention With Machine Learning: Population-Based, External, and Diagnostic Validation Study.

JMIR public health and surveillance
BACKGROUND: Cervical cancer remains a major global health issue. Personalized, data-driven cervical cancer prevention (CCP) strategies tailored to phenotypic profiles may improve prevention and reduce disease burden.

Predicting complications after laparoscopic surgery for ureteropelvic junction obstruction using machine learning models: a retrospective cohort study.

World journal of urology
PURPOSES: Postoperative complications in patients with ureteropelvic junction obstruction (UPJO) negatively impact surgical outcomes and may necessitate redo surgery. We aimed to predict the occurrence of postoperative complications in these patients...

Mitochondrial mt12361A>G increased risk of metabolic dysfunction-associated steatotic liver disease among non-diabetes.

World journal of gastroenterology
BACKGROUND: Insulin resistance, lipotoxicity, and mitochondrial dysfunction contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Mitochondrial dysfunction impairs oxidative phosphorylation and increases ...

Automated Imaging Differentiation for Parkinsonism.

JAMA neurology
IMPORTANCE: Magnetic resonance imaging (MRI) paired with appropriate disease-specific machine learning holds promise for the clinical differentiation of Parkinson disease (PD), multiple system atrophy (MSA) parkinsonian variant, and progressive supra...