AIMC Topic: Cohort Studies

Clear Filters Showing 31 to 40 of 1169 articles

Prediction of new-onset migraine using clinical-genotypic data from the HUNT Study: a machine learning analysis.

The journal of headache and pain
BACKGROUND: Migraine is associated with a range of symptoms and comorbid disorders and has a strong genetic basis, but the currently identified risk loci only explain a small portion of the heritability, often termed the "missing heritability". We ai...

Pancreatic Cancer Detection and Differentiation from Chronic Pancreatitis: Potential Biomarkers Identified through a High-Throughput Multiplex Proteomic Assay and Machine Learning-Based Analysis.

Annals of laboratory medicine
BACKGROUND: Pancreatic cancer (PC)-screening methods have limited accuracy despite their high clinical demand. Differential diagnosis of chronic pancreatitis (CP) poses another challenge for PC diagnosis. Therefore, we aimed to identify blood protein...

Development, validation, and clinical evaluation of a machine-learning based model for diagnosing early infection after cardiovascular surgery (DEICS): a multi-center cohort study.

International journal of surgery (London, England)
BACKGROUND: This study addresses the critical need for timely and accurate diagnosis of early postoperative infection (EPI) following cardiac surgery. EPI significantly impacts patient outcomes and healthcare costs, making its early detection vital.

Automatic Human Embryo Volume Measurement in First Trimester Ultrasound From the Rotterdam Periconception Cohort: Quantitative and Qualitative Evaluation of Artificial Intelligence.

Journal of medical Internet research
BACKGROUND: Noninvasive volumetric measurements during the first trimester of pregnancy provide unique insight into human embryonic growth and development. However, current methods, such as semiautomatic (eg, virtual reality [VR]) or manual segmentat...

Prognostic value of SAPS II score for 28-day mortality in ICU patients with acute pulmonary embolism.

International journal of cardiology
BACKGROUND: Acute pulmonary embolism (APE) is a common and life-threatening emergency in intensive care units (ICUs). Effective risk assessment tools are essential to improve patient outcomes. This study aims to evaluate the association between Simpl...

Exploring the Incremental Value of Aorta Enhancement Normalization Method in Evaluating Renal Cell Carcinoma Histological Subtypes: A Multi-center Large Cohort Study.

Academic radiology
RATIONALE AND OBJECTIVES: The classification of renal cell carcinoma (RCC) histological subtypes plays a crucial role in clinical diagnosis. However, traditional image normalization methods often struggle with discrepancies arising from differences i...

Machine learning models for predicting metabolic dysfunction-associated steatotic liver disease prevalence using basic demographic and clinical characteristics.

Journal of translational medicine
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern that necessitates early screening and timely intervention to improve prognosis. The current diagnostic protocols for MASLD involve complex procedu...

Development and evaluation of a machine learning model for osteoporosis risk prediction in Korean women.

BMC women's health
BACKGROUND: The aim of this study was to develop a machine learning (ML) model for classifying osteoporosis in Korean women based on a large-scale population cohort study. This study also aimed to assess ML model performance compared with traditional...

Predicting quality of life of patients after treatment for spinal metastatic disease: development and internal evaluation.

The spine journal : official journal of the North American Spine Society
BACKGROUND CONTEXT: When treating spinal metastases in a palliative setting, maintaining or enhancing quality of life (QoL) is the primary therapeutic objective. Clinicians tailor their treatment strategy by weighing the QoL benefits against expected...

Predicting rheumatoid arthritis progression from seronegative undifferentiated arthritis using machine learning: a deep learning model trained on the KURAMA cohort and externally validated with the ANSWER cohort.

Arthritis research & therapy
BACKGROUND: Undifferentiated arthritis (UA) often develops into rheumatoid arthritis (RA), but predicting disease progression from seronegative UA remains challenging because seronegative RA often does not meet the classification criteria. This study...