AIMC Topic: Coronary Artery Disease

Clear Filters Showing 21 to 30 of 524 articles

Bi-variational physics-informed operator network for fractional flow reserve curve assessment from coronary angiography.

Medical image analysis
The coronary angiography-derived fractional flow reserve (FFR) curve, referred to as the Angio-FFR curve, is crucial for guiding percutaneous coronary intervention (PCI). The invasive FFR is the diagnostic gold standard for determining functional sig...

Implementation of a national AI technology program on cardiovascular outcomes and the health system.

Nature medicine
Coronary artery disease (CAD) is a major cause of ill health and death worldwide. Coronary computed tomographic angiography (CCTA) is the first-line investigation to detect CAD in symptomatic patients. This diagnostic approach risks greater second-li...

Learning-Based Models for Predicting IVIG Resistance and Coronary Artery Lesions in Kawasaki Disease: A Review of Technical Aspects and Study Features.

Paediatric drugs
Kawasaki disease (KD) is a common pediatric vasculitis, with coronary artery lesions (CALs) representing its most severe complication. Early identification of high-risk patients, including those with disease resistant to first-line treatments, is ess...

Artificial Intelligence-Enhanced Perfusion Scoring Improves the Diagnostic Accuracy of Myocardial Perfusion Imaging.

Journal of nuclear medicine : official publication, Society of Nuclear Medicine
We previously demonstrated that a deep learning (DL) model of myocardial perfusion SPECT imaging improved accuracy for detection of obstructive coronary artery disease (CAD). We aimed to improve the clinical translatability of this artificial intelli...

AI-Quantitative CT Coronary Plaque Features Associate With a Higher Relative Risk in Women: CONFIRM2 Registry.

Circulation. Cardiovascular imaging
BACKGROUND: Coronary plaque features are imaging biomarkers of cardiovascular risk, but less is known about sex-specific patterns in their prognostic value. This study aimed to define sex differences in the coronary atherosclerotic phenotypes assesse...

Surrogate markers of insulin resistance and coronary artery disease in type 2 diabetes: U-shaped TyG association and insights from machine learning integration.

Lipids in health and disease
BACKGROUND: Surrogate insulin resistance (IR) indices are simpler and more practical alternatives to insulin-based IR indicators for clinical use. This study explored the association between surrogate IR indices, including triglyceride-glucose index ...

Machine learning analysis of integrated ABP and PPG signals towards early detection of coronary artery disease.

Scientific reports
Every year, Coronary Artery Disease (CAD) claims lives of over a million people. CAD occurs when the coronary arteries, responsible for supplying oxygenated blood to the heart, get occluded due to plaque deposits on their inner walls. The most critic...

Non-invasive derivation of instantaneous free-wave ratio from invasive coronary angiography using a new deep learning artificial intelligence model and comparison with human operators' performance.

The international journal of cardiovascular imaging
Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for...

Elucidating the role of KCTD10 in coronary atherosclerosis: Harnessing bioinformatics and machine learning to advance understanding.

Scientific reports
Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and serves as a major contributor to cardiovascular diseases. KCTD10, a protein implicated in a variety of biological pro...