AIMC Topic: Deep Learning

Clear Filters Showing 501 to 510 of 26344 articles

CAD-Unet: A capsule network-enhanced Unet architecture for accurate segmentation of COVID-19 lung infections from CT images.

Medical image analysis
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accu...

Deep Learning-Based Prediction of Decoy Spectra for False Discovery Rate Estimation in Spectral Library Searching.

Journal of proteome research
With the advantage of extensive coverage, predicted spectral libraries are becoming an attractive alternative in proteomic data analysis. As a popular false discovery rate estimation method, target decoy search has been adopted in library search work...

Construction of a deep learning model and identification of the pivotal characteristics of FGF7- and MGST1- positive fibroblasts in heart failure post-myocardial infarction.

International journal of biological macromolecules
Dysregulation of fibroblast function is closely associated with the occurrence of heart failure after myocardial infarction (post-MI HF). Myocardial fibrosis is a detrimental consequence of aberrant fibroblast activation and extracellular matrix depo...

Advancing harmful algal bloom predictions using chlorophyll-a as an Indicator: Combining deep learning and EnKF data assimilation method.

Journal of environmental management
The use of data driven deep learning models to predict and monitor Harmful Algal Blooms (HABs) has evolved over the years due to increasing technologies, availability of high frequency data, and statistical prowess. Despite the prowess of these data ...

EBMGP: a deep learning model for genomic prediction based on Elastic Net feature selection and bidirectional encoder representations from transformer's embedding and multi-head attention pooling.

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Enhancing early selection through genomic estimated breeding values is pivotal for reducing generation intervals and accelerating breeding programs. Recently, deep learning (DL) approaches have gained prominence in genomic prediction (GP). Here, we i...

Automated assessment of simulated laparoscopic surgical skill performance using deep learning.

Scientific reports
Artificial intelligence (AI) has the potential to improve healthcare and patient safety and is currently being adopted across various fields of medicine and healthcare. AI and in particular computer vision (CV) are well suited to the analysis of mini...

Efficient hybrid heuristic adopted deep learning framework for diagnosing breast cancer using thermography images.

Scientific reports
The most dangerous form of cancer is breast cancer. This disease is life-threatening because of its aggressive nature and high death rates. Therefore, early discovery increases the patient's survival. Mammography has recently been recommended as diag...

Deep learning unlocks the true potential of organ donation after circulatory death with accurate prediction of time-to-death.

Scientific reports
Increasing the number of organ donations after circulatory death (DCD) has been identified as one of the most important ways of addressing the ongoing organ shortage. While recent technological advances in organ transplantation have increased their s...

World of Forms: Deformable geometric templates for one-shot surface meshing in coronary CT angiography.

Medical image analysis
Deep learning-based medical image segmentation and surface mesh generation typically involve a sequential pipeline from image to segmentation to meshes, often requiring large training datasets while making limited use of prior geometric knowledge. Th...

Smart contours: deep learning-driven internal gross tumor volume delineation in non-small cell lung cancer using 4D CT maximum and average intensity projections.

Radiation oncology (London, England)
BACKGROUND: Delineating the internal gross tumor volume (IGTV) is crucial for the treatment of non-small cell lung cancer (NSCLC). Deep learning (DL) enables the automation of this process; however, current studies focus mainly on multiple phases of ...