AIMC Topic: Diabetes Mellitus, Type 2

Clear Filters Showing 61 to 70 of 423 articles

A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions.

Nature communications
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory ...

PPARγ modulator predictor (PGMP_v1): chemical space exploration and computational insights for enhanced type 2 diabetes mellitus management.

Molecular diversity
Peroxisome proliferator-activated receptor gamma (PPARγ) plays a critical role in adipocyte differentiation and enhances insulin sensitivity. In contemporary drug discovery, in silico design strategies offer significant advantages by revealing essent...

Using a robust model to detect the association between anthropometric factors and T2DM: machine learning approaches.

BMC medical informatics and decision making
BACKGROUND: The aim of this study was to evaluate the potential models to determine the most important anthropometric factors associated with type 2 diabetes mellitus (T2DM).

Deciphering the role of metal ion transport-related genes in T2D pathogenesis and immune cell infiltration via scRNA-seq and machine learning.

Frontiers in immunology
INTRODUCTION: Type 2 diabetes (T2D) is a complex metabolic disorder with significant global health implications. Understanding the molecular mechanisms underlying T2D is crucial for developing effective therapeutic strategies. This study employs sing...

Use of Machine Learning to Predict Individual Postprandial Glycemic Responses to Food Among Individuals With Type 2 Diabetes in India: Protocol for a Prospective Cohort Study.

JMIR research protocols
BACKGROUND: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective...

Enhanced accuracy and stability in automated intra-pancreatic fat deposition monitoring of type 2 diabetes mellitus using Dixon MRI and deep learning.

Abdominal radiology (New York)
PURPOSE: Intra-pancreatic fat deposition (IPFD) is closely associated with the onset and progression of type 2 diabetes mellitus (T2DM). We aimed to develop an accurate and automated method for assessing IPFD on multi-echo Dixon MRI.

Deep learning based prediction of depression and anxiety in patients with type 2 diabetes mellitus using regional electronic health records.

International journal of medical informatics
BACKGROUND: Depression and anxiety are prevalent mental health conditions among individuals with type 2 diabetes mellitus (T2DM), who exhibit unique vulnerabilities and etiologies. However, existing approaches fail to fully utilize regional heterogen...

Machine learning-driven Raman spectroscopy: A novel approach to lipid profiling in diabetic kidney disease.

Nanomedicine : nanotechnology, biology, and medicine
Diabetes mellitus is a chronic metabolic disease that increasingly affects people every year. It is known that with its progression and poor management, metabolic changes can lead to organ dysfunctions, including kidneys. The study aimed to combine R...

Immunometabolic alterations in type 2 diabetes mellitus revealed by single-cell RNA sequencing: insights into subtypes and therapeutic targets.

Frontiers in immunology
BACKGROUND: Type 2 Diabetes Mellitus (T2DM) represents a major global health challenge, marked by chronic hyperglycemia, insulin resistance, and immune system dysfunction. Immune cells, including T cells and monocytes, play a pivotal role in driving ...

Predictive value of machine learning for the progression of gestational diabetes mellitus to type 2 diabetes: a systematic review and meta-analysis.

BMC medical informatics and decision making
BACKGROUND: This systematic review aims to explore the early predictive value of machine learning (ML) models for the progression of gestational diabetes mellitus (GDM) to type 2 diabetes mellitus (T2DM).