A 360-area surface-based cortical parcellation is extended to study mild cognitive impairment (MCI) and Alzheimer's disease (AD) from healthy control (HC) using the joint human connectome project multi-modal parcellation (JHCPMMP) proposed by us. We ...
Background Coronavirus disease 2019 (COVID-19) has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to...
Diagnosing autism spectrum disorders (ASD) is a complicated, time-consuming process which is particularly challenging in older individuals. One of the most widely used behavioral diagnostic tools is the Autism Diagnostic Observation Schedule (ADOS). ...
Fibromyalgia (FM) diagnosis remains a challenge for clinicians due to a lack of objective diagnostic tools. One proposed solution is the use of quantitative ultrasound (US) techniques, such as image texture analysis, which has demonstrated discrimina...
Cell Population Data (CPD) provides various blood cell parameters that can be used for differential diagnosis. Data analytics using Machine Learning (ML) have been playing a pivotal role in revolutionizing medical diagnostics. This research presents ...
The objectives were to develop and validate a Convolutional Neural Network (CNN) using local features for differentiating distal ureteral stones from pelvic phleboliths, compare the CNN method with a semi-quantitative method and with radiologists' as...
BACKGROUND: Modeling human cardiac diseases with induced pluripotent stem cells not only enables to study disease pathophysiology and develop therapies but also, as we have previously showed, it can offer a tool for disease diagnostics. We previousl...
BACKGROUND: Progressive supranuclear palsy (PSP), a neurodegenerative conditions may be difficult to discriminate clinically from idiopathic Parkinson's disease (PD). It is critical that we are able to do this accurately and as early as possible in o...
OBJECTIVES: To develop and evaluate the feasibility of an objective method using artificial intelligence (AI) and image processing in a semi-automated fashion for tumour-to-cortex peak early-phase enhancement ratio (PEER) in order to differentiate CD...
OBJECTIVES: To establish a quantitative MR model that uses clinically relevant features of tumor location and tumor volume to differentiate lower grade glioma (LRGG, grades II and III) and glioblastoma (GBM, grade IV).