OBJECTIVE: To assess if adding perfusion information from dynamic contrast-enhanced (DCE MRI) acquisition schemes with high spatiotemporal resolution to T2w/DWI sequences as input features for a gradient boosting machine (GBM) machine learning (ML) c...
PURPOSE: Ischemic lesion volume (ILV) is an important radiological predictor of functional outcome in patients with anterior circulation stroke. Our aim was to assess the agreement between automated ILV measurements on NCCT using the Brainomix softwa...
Annals of clinical and translational neurology
Apr 18, 2020
OBJECTIVE: Multiple sclerosis (MS) lesions are heterogeneous with regard to inflammation, demyelination, axonal injury, and neuronal loss. We previously developed a diffusion basis spectrum imaging (DBSI) technique to better address MS lesion heterog...
BACKGROUND AND AIMS: Preterm birth imposes a high risk for developing neuromotor delay. Earlier prediction of adverse outcome in preterm infants is crucial for referral to earlier intervention. This study aimed to predict abnormal motor outcome at 2 ...
Radiomic features achieve promising results in cancer diagnosis, treatment response prediction, and survival prediction. Our goal is to compare the handcrafted (explicitly designed) and deep learning (DL)-based radiomic features extracted from pre-tr...
Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
Mar 6, 2020
To accelerate high-resolution diffusion-weighted imaging with a multi-shot echo-planar sequence, we propose an approach based on reduced averaging and deep learning. Denoising convolutional neural networks can reduce amplified noise without requiring...
PURPOSE: To develop and identify a MRI-based radiomics nomogram for the preoperative prediction of parametrial invasion (PMI) in patients with early-stage cervical cancer (ECC).
We propose a new framework to map structural connectomes using deep learning and diffusion MRI. We show that our framework not only enables connectome mapping with a convolutional neural network (CNN), but can also be straightforwardly incorporated i...
Diffusion Magnetic Resonance Imaging (dMRI) has shown great potential in probing tissue microstructure and structural connectivity in the brain but is often limited by the lengthy scan time needed to sample the diffusion profile by acquiring multiple...
Background and Purpose- We aimed to investigate the ability of machine learning (ML) techniques analyzing diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging to identify patients within the reco...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.