AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Diffusion Magnetic Resonance Imaging

Showing 241 to 250 of 318 articles

Clear Filters

Prostate Cancer Detection using Deep Convolutional Neural Networks.

Scientific reports
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intens...

Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics.

IEEE journal of biomedical and health informatics
OBJECTIVE: Histologic grade and Ki-67 proliferation status are important clinical indictors for breast cancer prognosis and treatment. The purpose of this study is to improve prediction accuracy of these clinical indicators based on tumor radiomic an...

Machine learning-based multiparametric MRI radiomics for predicting the aggressiveness of papillary thyroid carcinoma.

European journal of radiology
PURPOSE: To investigate the predictive capability of machine learning-based multiparametric magnetic resonance (MR) imaging radiomics for evaluating the aggressiveness of papillary thyroid carcinoma (PTC) preoperatively.

Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.

European radiology
OBJECTIVE: To develop and evaluate the performance of U-Net for fully automated localization and segmentation of cervical tumors in magnetic resonance (MR) images and the robustness of extracting apparent diffusion coefficient (ADC) radiomics feature...

A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging.

European radiology experimental
BACKGROUND: To develop a supervised machine learning (ML) algorithm predicting above- versus below-median overall survival (OS) from diffusion-weighted imaging-derived radiomic features in patients with pancreatic ductal adenocarcinoma (PDAC).

MoDL-MUSSELS: Model-Based Deep Learning for Multishot Sensitivity-Encoded Diffusion MRI.

IEEE transactions on medical imaging
We introduce a model-based deep learning architecture termed MoDL-MUSSELS for the correction of phase errors in multishot diffusion-weighted echo-planar MR images. The proposed algorithm is a generalization of the existing MUSSELS algorithm with simi...

Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.

European radiology
OBJECTIVE: To present a deep learning-based approach for semi-automatic prostate cancer classification based on multi-parametric magnetic resonance (MR) imaging using a 3D convolutional neural network (CNN).

Development and validation of the automated imaging differentiation in parkinsonism (AID-P): a multicentre machine learning study.

The Lancet. Digital health
BACKGROUND: Development of valid, non-invasive biomarkers for parkinsonian syndromes is crucially needed. We aimed to assess whether non-invasive diffusion-weighted MRI can distinguish between parkinsonian syndromes using an automated imaging approac...

Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study.

Magnetic resonance imaging
BACKGROUND AND PURPOSE: Advanced imaging analysis for the prediction of tumor biology and modelling of clinically relevant parameters using computed imaging features is part of the emerging field of radiomics research. Here we test the hypothesis tha...

Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI.

Magnetic resonance in medicine
PURPOSE: This prospective clinical study assesses the feasibility of training a deep neural network (DNN) for intravoxel incoherent motion (IVIM) model fitting to diffusion-weighted MRI (DW-MRI) data and evaluates its performance.