AIMC Topic: Disease Progression

Clear Filters Showing 161 to 170 of 748 articles

Prediction of Alzheimer's disease progression within 6 years using speech: A novel approach leveraging language models.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Identification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials.

Group-informed attentive framework for enhanced diabetes mellitus progression prediction.

Frontiers in endocrinology
The increasing prevalence of Diabetes Mellitus (DM) as a global health concern highlights the paramount importance of accurately predicting its progression. This necessity has propelled the use of deep learning's advanced analytical and predictive ca...

Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis.

Journal of neurology
BACKGROUND: Robust predictive models of clinical impairment and worsening in multiple sclerosis (MS) are needed to identify patients at risk and optimize treatment strategies.

Prediction of short-term progression of COVID-19 pneumonia based on chest CT artificial intelligence: during the Omicron epidemic.

BMC infectious diseases
BACKGROUND AND PURPOSE: The persistent progression of pneumonia is a critical determinant of adverse outcomes in patients afflicted with COVID-19. This study aimed to predict personalized COVID-19 pneumonia progression between the duration of two wee...

Time-Dependent Deep Learning Prediction of Multiple Sclerosis Disability.

Journal of imaging informatics in medicine
The majority of deep learning models in medical image analysis concentrate on single snapshot timepoint circumstances, such as the identification of current pathology on a given image or volume. This is often in contrast to the diagnostic methodology...

Decoding temporal heterogeneity in NSCLC through machine learning and prognostic model construction.

World journal of surgical oncology
BACKGROUND: Non-small cell lung cancer (NSCLC) is a prevalent and heterogeneous disease with significant genomic variations between the early and advanced stages. The identification of key genes and pathways driving NSCLC tumor progression is critica...

Machine learning for predicting hematoma expansion in spontaneous intracerebral hemorrhage: a systematic review and meta-analysis.

Neuroradiology
PURPOSE: Early identification of hematoma enlargement and persistent hematoma expansion (HE) in patients with cerebral hemorrhage is increasingly crucial for determining clinical treatments. However, due to the lack of clinically effective tools, rad...

Symptom phenotyping in people with cystic fibrosis during acute pulmonary exacerbations using machine-learning K-means clustering analysis.

Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society
INTRODUCTION: People with cystic fibrosis (PwCF) experience frequent symptoms associated with chronic lung disease. A complication of CF is a pulmonary exacerbation (PEx), which is often preceded by an increase in symptoms and a decline in lung funct...