AIMC Topic: Disease Progression

Clear Filters Showing 171 to 180 of 748 articles

First experiences with machine learning predictions of accelerated declining eGFR slope of living kidney donors 3 years after donation.

Journal of nephrology
BACKGROUND: Living kidney donors are screened pre-donation to estimate the risk of end-stage kidney disease (ESKD). We evaluate Machine Learning (ML) to predict the progression of kidney function deterioration over time using the estimated GFR (eGFR)...

Machine Learning Identifies Key Proteins in Primary Sclerosing Cholangitis Progression and Links High CCL24 to Cirrhosis.

International journal of molecular sciences
Primary sclerosing cholangitis (PSC) is a rare, progressive disease, characterized by inflammation and fibrosis of the bile ducts, lacking reliable prognostic biomarkers for disease activity. Machine learning applied to broad proteomic profiling of s...

A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease.

Scientific reports
Alzheimer's disease (AD) accounts for 60-70% of the population with dementia. Mild cognitive impairment (MCI) is a diagnostic entity defined as an intermediate stage between subjective cognitive decline and dementia, and about 10-15% of people annual...

Machine learning for prediction of chronic kidney disease progression: Validation of the Klinrisk model in the CANVAS Program and CREDENCE trial.

Diabetes, obesity & metabolism
AIM: To validate the Klinrisk machine learning model for prediction of chronic kidney disease (CKD) progression in patients with type 2 diabetes in the pooled CANVAS/CREDENCE trials.

Geodesic shape regression based deep learning segmentation for assessing longitudinal hippocampal atrophy in dementia progression.

NeuroImage. Clinical
Longitudinal hippocampal atrophy is commonly used as progressive marker assisting clinical diagnose of dementia. However, precise quantification of the atrophy is limited by longitudinal segmentation errors resulting from MRI artifacts across multipl...

Machine learning-based characterization of the gut microbiome associated with the progression of primary biliary cholangitis to cirrhosis.

Microbes and infection
BACKGROUND: Primary biliary cholangitis (PBC) is associated closely with the gut microbiota. This study aimed to explore the characteristics of the gut microbiota after the progress of PBC to cirrhosis.

An interpretable data-driven prediction model to anticipate scoliosis in spinal muscular atrophy in the era of (gene-) therapies.

Scientific reports
5q-spinal muscular atrophy (SMA) is a neuromuscular disorder (NMD) that has become one of the first 5% treatable rare diseases. The efficacy of new SMA therapies is creating a dynamic SMA patient landscape, where disease progression and scoliosis dev...

Bridging Imaging and Clinical Scores in Parkinson's Progression via Multimodal Self-Supervised Deep Learning.

International journal of neural systems
Neurodegenerative diseases pose a formidable challenge to medical research, demanding a nuanced understanding of their progressive nature. In this regard, latent generative models can effectively be used in a data-driven modeling of different dimensi...

Machine learning models for predicting early hemorrhage progression in traumatic brain injury.

Scientific reports
This study explores the progression of intracerebral hemorrhage (ICH) in patients with mild to moderate traumatic brain injury (TBI). It aims to predict the risk of ICH progression using initial CT scans and identify clinical factors associated with ...

Prediction of retinopathy progression using deep learning on retinal images within the Scottish screening programme.

The British journal of ophthalmology
BACKGROUND/AIMS: National guidelines of many countries set screening intervals for diabetic retinopathy (DR) based on grading of the last screening retinal images. We explore the potential of deep learning (DL) on images to predict progression to ref...