BACKGROUND: Glioblastoma (GBM) is a highly aggressive primary brain tumor. Currently, the suggested line of action is the surgical resection followed by radiotherapy and treatment with the adjuvant temozolomide, a DNA alkylating agent. However, the a...
Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
29770368
MGMT promoter methylation and IDH1 mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which is...
Computer methods and programs in biomedicine
28254081
BACKGROUND AND OBJECTIVE: The O-methylguanine-DNA-methyltransferase (MGMT) promoter methylation has been shown to be associated with improved outcomes in patients with glioblastoma (GBM) and may be a predictive marker of sensitivity to chemotherapy. ...
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
29218894
Glioblastoma Multiforme (GBM), a malignant brain tumor, is among the most lethal of all cancers. Temozolomide is the primary chemotherapy treatment for patients diagnosed with GBM. The methylation status of the promoter or the enhancer regions of the...
BACKGROUND AND PURPOSE: The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimenta...
Methylation of the O-methylguanine methyltransferase (MGMT) gene promoter is correlated with the effectiveness of the current standard of care in glioblastoma patients. In this study, a deep learning pipeline is designed for automatic prediction of M...
Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
32394100
BACKGROUND: Magnetic resonance imaging (MRI) and amino acid positron-emission tomography (PET) of the brain contain a vast amount of structural and functional information that can be analyzed by machine learning algorithms and radiomics for the use o...
INTRODUCTION: Survival varies in patients with glioblastoma due to intratumoral heterogeneity and radiomics/imaging biomarkers have potential to demonstrate heterogeneity. The objective was to combine radiomic, semantic and clinical features to impro...