AIMC Topic: Exome Sequencing

Clear Filters Showing 1 to 10 of 47 articles

Explainable deep learning for stratified medicine in inflammatory bowel disease.

Genome biology
Moving from a one-size-fits-all to an individual approach in precision medicine requires a deeper understanding of disease molecular mechanisms. Especially in heterogeneous complex diseases such as inflammatory bowel disease (IBD), better molecular s...

Genome sequencing is critical for forecasting outcomes following congenital cardiac surgery.

Nature communications
While exome and whole genome sequencing have transformed medicine by elucidating the genetic underpinnings of both rare and common complex disorders, its utility to predict clinical outcomes remains understudied. Here, we use artificial intelligence ...

Whole‑exome evolutionary profiling of osteosarcoma uncovers metastasis‑related driver mutations and generates an independently validated predictive classifier.

Journal of translational medicine
BACKGROUND: Osteosarcoma is the most common primary malignant bone tumor, with high invasiveness and metastatic potential and a poor prognosis in patients with metastatic cancer. Despite the rapid advancements in genomics in recent years that provide...

Validation of an AI-enabled exome/transcriptome liquid biopsy platform for early detection, MRD, disease monitoring, and therapy selection for solid tumors.

Scientific reports
Effective clinical management of patients with cancer requires highly accurate diagnosis, precise therapy selection, and highly sensitive monitoring of disease burden. Caris Assure is a multifunctional blood-based assay that couples whole exome and w...

GNNMutation: a heterogeneous graph-based framework for cancer detection.

BMC bioinformatics
BACKGROUND: When genes are translated into proteins, mutations in the gene sequence can lead to changes in protein structure and function as well as in the interactions between proteins. These changes can disrupt cell function and contribute to the d...

TET2 gene mutation status associated with poor prognosis of transition zone prostate cancer: a retrospective cohort study based on whole exome sequencing and machine learning models.

Frontiers in endocrinology
BACKGROUND: Prostate cancer (PCa) in the transition zone (TZ) is uncommon and often poses challenges for early diagnosis, but its genomic determinants and therapeutic vulnerabilities remain poorly characterized.

Optimizing sequence data analysis using convolution neural network for the prediction of CNV bait positions.

BMC bioinformatics
BACKGROUND: Accurate prediction of copy number variations (CNVs) from targeted capture next-generation sequencing (NGS) data relies on effective normalization of read coverage profiles. The normalization process is particularly challenging due to hid...

A deep learning model for prediction of autism status using whole-exome sequencing data.

PLoS computational biology
Autism is a developmental disability. Research demonstrated that children with autism benefit from early diagnosis and early intervention. Genetic factors are considered major contributors to the development of autism. Machine learning (ML), includin...

Improving the Detection of Potential Cases of Familial Hypercholesterolemia: Could Machine Learning Be Part of the Solution?

Journal of the American Heart Association
BACKGROUND: Familial hypercholesterolemia (FH), while highly prevalent, is a significantly underdiagnosed monogenic disorder. Improved detection could reduce the large number of cardiovascular events attributable to poor case finding. We aimed to ass...

Exome sequence analysis identifies rare coding variants associated with a machine learning-based marker for coronary artery disease.

Nature genetics
Coronary artery disease (CAD) exists on a spectrum of disease represented by a combination of risk factors and pathogenic processes. An in silico score for CAD built using machine learning and clinical data in electronic health records captures disea...