AIMC Topic: Female

Clear Filters Showing 311 to 320 of 25362 articles

Prognostic predictions in psychosis: exploring the complementary role of machine learning models.

BMJ mental health
BACKGROUND: Predicting outcomes in schizophrenia spectrum disorders is challenging due to the variability of individual trajectories. While machine learning (ML) shows promise in outcome prediction, it has not yet been integrated into clinical practi...

Exploring semantic grounding in the posterior parietal cortex.

Brain structure & function
This study examines the evolving perspective on semantic processing, which has shifted from the traditional view of an isolated semantic memory system to one that recognizes the involvement of dynamic, distributed neural networks. Recent evidence sup...

From laser-on time to lithotripsy duration: improving the prediction of lithotripsy duration with 'Kidney Stone Calculator' using artificial intelligence.

World journal of urology
INTRODUCTION: "Kidney Stone Calculator" (KSC) helps to plan flexible ureteroscopy, providing the stone volume (SV) and an estimated duration of laser lithotripsy (eLD). eLD is calculated from in vitro ablation rates and SV. KSC's accuracy has been de...

Epicardial adipose tissue, myocardial remodelling and adverse outcomes in asymptomatic aortic stenosis: a post hoc analysis of a randomised controlled trial.

Heart (British Cardiac Society)
BACKGROUND: Epicardial adipose tissue represents a metabolically active visceral fat depot that is in direct contact with the left ventricular myocardium. While it is associated with coronary artery disease, little is known regarding its role in aort...

Comparative investigation of bagging enhanced machine learning for early detection of HCV infections using class imbalance technique with feature selection.

PloS one
Around 1.5 million new cases of Hepatitis C Virus (HCV) are diagnosed globally each year (World Health Organization, 2023). Consequently, there is a pressing need for early diagnostic methods for HCV. This study investigates the prognostic accuracy o...

Effect of the exposure to brominated flame retardants on hyperuricemia using interpretable machine learning algorithms based on the SHAP methodology.

PloS one
BACKGROUND: Brominated flame retardants (BFRs) are classified as important endocrine disruptors and persistent organic pollutants; nevertheless, there is no comprehensive investigation to evaluate the association between BFRs and hyperuricemia, and t...

Evaluating real-world performance of an automated offline glaucoma AI on a smartphone fundus camera across glaucoma severity stages.

PloS one
PURPOSE: Leveraging an artificial intelligence system (AI) for glaucoma screening can mitigate the current challenges and provide prompt detection and management crucial in averting irreversible blindness. The study reports the real-world performance...

Multi-site validation of an interpretable model to analyze breast masses.

PloS one
An external validation of IAIA-BL-a deep-learning based, inherently interpretable breast lesion malignancy prediction model-was performed on two patient populations: 207 women ages 31 to 96, (425 mammograms) from iCAD, and 58 women (104 mammograms) f...

Progression and natural history of Atypical Parkinsonism (ATPARK): Protocol for a longitudinal follow-up study from an underrepresented population.

PloS one
BACKGROUND: Atypical Parkinsonian Syndromes (APS) form the third largest group of neurodegenerative disorders including Progressive Supranuclear Palsy (PSP), Multiple System Atrophy (MSA), and Corticobasal Syndrome (CBS). These conditions are charact...