Hashimoto's thyroiditis (HT) is the main cause of hypothyroidism. We develop a deep learning model called HTNet for diagnosis of HT by training on 106,513 thyroid ultrasound images from 17,934 patients and test its performance on 5051 patients from 2...
PURPOSE: This study aims to develop a non-invasive diagnosis model using machine learning (ML) for identifying high-risk IgG4 Hashimoto's thyroiditis (HT) patients.
Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition
39170022
OBJECTIVE: To analyze the radiomic and clinical features extracted from 2D ultrasound images of thyroid tumors in patients with Hashimoto's thyroiditis (HT) combined with papillary thyroid carcinoma (PTC) using machine learning (ML) models, and to ex...
There is a growing body of evidence suggesting that Hashimoto's thyroiditis (HT) may contribute to an increased risk of papillary thyroid carcinoma (PTC). However, the exact relationship between HT and PTC is still not fully understood. The objective...
While ultrasonography effectively diagnoses Hashimoto's thyroiditis (HT), exploring its transcriptomic landscape could reveal valuable insights into disease mechanisms. This study aimed to identify HT-associated RNA signatures and investigate their p...
OBJECTIVE: The objective was to utilize nine machine learning (ML) methods to predict the prognosis of antibody positive autoimmune encephalitis (AE) patients.
BACKGROUND AND OBJECTIVE: Autoimmune encephalitis (AE) is an immune-mediated disease. Some patients experience persistent cognitive deficits despite receiving immunotherapy. We aimed to develop a prediction model for long-term cognitive outcomes in p...
In our study, we aim to predict the antibody serostatus of patients with suspected autoimmune encephalitis (AE) using machine learning based on pre-contrast T2-weighted MR images acquired at symptom onset. A confirmation of seropositivity is of great...
OBJECTIVE: This study aims to characterize and analyze the expression of representative biomarkers like lymphocytes and immune subsets in children with thyroid disorders. It also intends to develop and evaluate a machine learning model to predict if ...
BACKGROUND: Seronegative Hashimoto's thyroiditis is often underdiagnosed due to the lack of antibody markers. Combining ultrasound radiomics with machine learning offers potential for early detection in patients with normal thyroid function.