AIMC Topic: Hospitalization

Clear Filters Showing 61 to 70 of 481 articles

Predicting paediatric asthma exacerbations with machine learning: a systematic review with meta-analysis.

European respiratory review : an official journal of the European Respiratory Society
BACKGROUND: Asthma exacerbations in children pose a significant burden on healthcare systems and families. While traditional risk assessment tools exist, artificial intelligence (AI) offers the potential for enhanced prediction models.

Assessing COVID-19 Vaccine Effectiveness and Risk Factors for Severe Outcomes through Machine Learning Techniques: A Real-World Data Study in Andalusia, Spain.

Journal of epidemiology and global health
BACKGROUND: COVID-19 vaccination has become a pivotal global strategy in managing the pandemic. Despite COVID-19 no longer being classified as a Public Health Emergency of International Concern, the virus continues affecting people worldwide. This st...

Clinical and socioeconomic predictors of hospital use and emergency department visits among children with medical complexity: A machine learning approach using administrative data.

PloS one
OBJECTIVES: The primary objective of this study was to identify clinical and socioeconomic predictors of hospital and ED use among children with medical complexity within 1 and 5 years of an initial discharge between 2010 and 2013. A secondary object...

Using Atrial Fibrillation Burden Trends and Machine Learning to Predict Near-Term Risk of Cardiovascular Hospitalization.

Circulation. Arrhythmia and electrophysiology
BACKGROUND: Atrial fibrillation is associated with an increased risk of cardiovascular hospitalization (CVH), which may be triggered by changes in daily burden. Machine learning of dynamic trends in atrial fibrillation burden, as measured by insertab...

OrthoMortPred: Predicting one-year mortality following orthopedic hospitalization.

International journal of medical informatics
OBJECTIVE: Predicting mortality risk following orthopedic surgery is crucial for informed decision-making and patient care. This study aims to develop and validate a machine learning model for predicting one-year mortality risk after orthopedic hospi...

Proof of concept study on early forecasting of antimicrobial resistance in hospitalized patients using machine learning and simple bacterial ecology data.

Scientific reports
Antibiotic resistance in bacterial pathogens is a major threat to global health, exacerbated by the misuse of antibiotics. In hospital practice, results of bacterial cultures and antibiograms can take several days. Meanwhile, prescribing an empirical...

Development of a Predictive Hospitalization Model for Skilled Nursing Facility Patients.

Journal of the American Medical Directors Association
OBJECTIVES: Identifying skilled nursing facility (SNF) patients at risk for hospitalization or death is of interest to SNFs, patients, and patients' families because of quality measures, financial penalties, and limited clinical staffing. We aimed to...

The application of machine learning for identifying frailty in older patients during hospital admission.

BMC medical informatics and decision making
BACKGROUND: Early identification of frail patients and early interventional treatment can minimize the frailty-related medical burden. This study investigated the use of machine learning (ML) to detect frailty in hospitalized older adults with acute ...

Prediction model of in-hospital cardiac arrest using machine learning in the early phase of hospitalization.

The Kaohsiung journal of medical sciences
In hospitals, the deterioration of a patient's condition leading to death is often preceded by physiological abnormalities in the hours to days beforehand. Several risk-scoring systems have been developed to identify patients at risk of major adverse...

Rule-based natural language processing to examine variation in worsening heart failure hospitalizations by age, sex, race and ethnicity, and left ventricular ejection fraction.

American heart journal
BACKGROUND: Prior studies characterizing worsening heart failure events (WHFE) have been limited in using structured healthcare data from hospitalizations, and with little exploration of sociodemographic variation. The current study examined the impa...