PURPOSE: We sought to assess whether machine learning-based classification approaches can improve the classification of pancreatic tumor models relative to more simplistic analysis methods, using T relaxation, CEST, and DCE MRI.
PURPOSE: To evaluate the performance of a machine learning method based on texture features in multi-parametric magnetic resonance imaging (MRI) to differentiate a glioblastoma multiforme (GBM) from a primary cerebral nervous system lymphoma (PCNSL).
Multi-atlas segmentation approach is one of the most widely-used image segmentation techniques in biomedical applications. There are two major challenges in this category of methods, i.e., atlas selection and label fusion. In this paper, we propose a...
Breast cancer is the most commonly diagnosed cancer, which alone accounts for 30% all new cancer diagnoses for women, posing a threat to women's health. Segmentation of breast ultrasound images into functional tissues can aid tumor localization, brea...
PURPOSE: The routine MRI scan protocol consists of multiple pulse sequences that acquire images of varying contrast. Since high frequency contents such as edges are not significantly affected by image contrast, down-sampled images in one contrast may...
Data augmentation is an essential part of training discriminative Convolutional Neural Networks (CNNs). A variety of augmentation strategies, including horizontal flips, random crops, and principal component analysis (PCA), have been proposed and sho...
Accurate segmentation of perivascular spaces (PVSs) is an important step for quantitative study of PVS morphology. However, since PVSs are the thin tubular structures with relatively low contrast and also the number of PVSs is often large, it is chal...
OBJECTIVE: Free-breathing abdomen imaging requires non-rigid motion registration of unavoidable respiratory motion in three-dimensional undersampled data sets. In this work, we introduce an image registration method based on the convolutional neural ...