Hypothyroidism is a known adverse event associated with the use of immune checkpoint inhibitors (ICIs) in cancer treatment. This study aimed to develop an interpretable machine learning (ML) model for individualized prediction of hypothyroidism in pa...
BACKGROUND: Immune checkpoint inhibitor (ICI) has been widely used in the treatment of advanced cancers, but predicting their efficacy remains challenging. Traditional biomarkers are numerous but exhibit heterogeneity within populations. For comprehe...
Immune checkpoint inhibitors targeting PD-L1 are crucial in cancer research for preventing cancer cells from evading the immune system. This study developed a screening model combining ANN, molecular similarity, and GNINA 1.0 docking to target PD-L1...
We present a study where predictive mechanistic modeling is combined with deep learning methods to predict individual patient survival probabilities under immune checkpoint inhibitor (ICI) immunotherapy. This hybrid approach enables prediction based ...
Tumorigenesis and treatment are closely associated with various programmed cell death (PCD) patterns. However, the coregulatory role of multiple PCD patterns in colorectal cancer (CRC) remains unknown. In this study, we developed a multiple PCD index...
INTRODUCTION: Immune checkpoint inhibitors (ICIs) are potent and precise therapies for various cancer types, significantly improving survival rates in patients who respond positively to them. However, only a minority of patients benefit from ICI trea...
Computer methods and programs in biomedicine
Aug 5, 2024
BACKGROUND: Immune-related cardiac adverse events (ircAEs) caused by programmed cell death protein-1 (PD-1) and programmed death-ligand-1 (PD-L1) inhibitors can lead to fulminant and even fatal consequences. This study aims to develop a prediction an...
BACKGROUND: Lenvatinib plus PD-1 inhibitors and interventional (LPI) therapy have demonstrated promising treatment effects in unresectable hepatocellular carcinoma (HCC). However, biomarkers for predicting the response to LPI therapy remain to be fur...
Clinical pharmacology and therapeutics
Jul 12, 2024
Existing survival prediction models rely only on baseline or tumor kinetics data and lack machine learning integration. We introduce a novel kinetics-machine learning (kML) model that integrates baseline markers, tumor kinetics, and four on-treatment...
BACKGROUND: Cancer-associated fibroblast (CAF)-cancer cell crosstalk (CCCT) plays an important role in tumor microenvironment shaping and immunotherapy response. Current prognostic indexes are insufficient to accurately assess immunotherapy response ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.