AIMC Topic: Ischemic Stroke

Clear Filters Showing 51 to 60 of 228 articles

Prediction of stroke-associated hospital-acquired pneumonia: Machine learning approach.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Stroke-associated Hospital Acquired Pneumonia (HAP) significantly impacts patient outcomes. This study explores the utility of machine learning models in predicting HAP in stroke patients, leveraging national registry data and SHapley Add...

Smartphone pupillometry with machine learning differentiates ischemic from hemorrhagic stroke: A pilot study.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
OBJECTIVES: Similarities between acute ischemic and hemorrhagic stroke make diagnosis and triage challenging. We studied a smartphone-based quantitative pupillometer for differentiation of acute ischemic and hemorrhagic stroke.

Machine learning and deep learning algorithms in stroke medicine: a systematic review of hemorrhagic transformation prediction models.

Journal of neurology
BACKGROUND: Acute ischemic stroke (AIS) is a major cause of morbidity and mortality, with hemorrhagic transformation (HT) further worsening outcomes. Traditional scoring systems have limited predictive accuracy for HT in AIS. Recent research has expl...

Residual risk prediction in anticoagulated patients with atrial fibrillation using machine learning: A report from the GLORIA-AF registry phase II/III.

European journal of clinical investigation
BACKGROUND: Although oral anticoagulation decreases the risk of thromboembolism in patients with atrial fibrillation (AF), a residual risk of thrombotic events still exists. This study aimed to construct machine learning (ML) models to predict the re...

Subtyping strokes using blood-based protein biomarkers: A high-throughput proteomics and machine learning approach.

European journal of clinical investigation
BACKGROUND: Rapid diagnosis of stroke and its subtypes is critical in early stages. We aimed to discover and validate blood-based protein biomarkers to differentiate ischemic stroke (IS) from intracerebral haemorrhage (ICH) using high-throughput prot...

Automated Segmentation of MRI White Matter Hyperintensities in 8421 Patients with Acute Ischemic Stroke.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: To date, only a few small studies have attempted deep learning-based automatic segmentation of white matter hyperintensity (WMH) lesions in patients with cerebral infarction; this issue is complicated because stroke-related le...

Influence of renal function on blood pressure control and outcome in thrombolyzed patients after acute ischemic stroke: analysis of the ENCHANTED trial.

Frontiers in endocrinology
BACKGROUND: The effect of renal impairment in patients who receive intravenous thrombolysis for acute ischemic stroke (AIS) is unclear. We aimed to determine the associations of renal impairment and clinical outcomes and any modification of the effec...

Deep learning-based segmentation of acute ischemic stroke MRI lesions and recurrence prediction within 1 year after discharge: A multicenter study.

Neuroscience
OBJECTIVE: To explore the performance of deep learning-based segmentation of infarcted lesions in the brain magnetic resonance imaging (MRI) of patients with acute ischemic stroke (AIS) and the recurrence prediction value of radiomics within 1 year a...

Pathological Asymmetry-Guided Progressive Learning for Acute Ischemic Stroke Infarct Segmentation.

IEEE transactions on medical imaging
Quantitative infarct estimation is crucial for diagnosis, treatment and prognosis in acute ischemic stroke (AIS) patients. As the early changes of ischemic tissue are subtle and easily confounded by normal brain tissue, it remains a very challenging ...