AIMC Topic: Ki-67 Antigen

Clear Filters Showing 41 to 50 of 58 articles

Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics.

IEEE journal of biomedical and health informatics
OBJECTIVE: Histologic grade and Ki-67 proliferation status are important clinical indictors for breast cancer prognosis and treatment. The purpose of this study is to improve prediction accuracy of these clinical indicators based on tumor radiomic an...

Machine Learning Approaches to Radiogenomics of Breast Cancer using Low-Dose Perfusion Computed Tomography: Predicting Prognostic Biomarkers and Molecular Subtypes.

Scientific reports
Radiogenomics investigates the relationship between imaging phenotypes and genetic expression. Breast cancer is a heterogeneous disease that manifests complex genetic changes and various prognosis and treatment response. We investigate the value of m...

Cytokeratin-Supervised Deep Learning for Automatic Recognition of Epithelial Cells in Breast Cancers Stained for ER, PR, and Ki-67.

IEEE transactions on medical imaging
Immunohistochemistry (IHC) of ER, PR, and Ki-67 are routinely used assays in breast cancer diagnostics. Determination of the proportion of stained cells (labeling index) should be restricted on malignant epithelial cells, carefully avoiding tumor inf...

Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning.

Neuroradiology
PURPOSE: Pituitary adenomas are among the most frequent intracranial tumors. They may exhibit clinically aggressive behavior, with recurrent disease and resistance to multimodal therapy. The ki-67 labeling index represents a proliferative marker whic...

Pixel-to-Pixel Learning With Weak Supervision for Single-Stage Nucleus Recognition in Ki67 Images.

IEEE transactions on bio-medical engineering
OBJECTIVE: Nucleus recognition is a critical yet challenging step in histopathology image analysis, for example, in Ki67 immunohistochemistry stained images. Although many automated methods have been proposed, most use a multi-stage processing pipeli...

Optimized generation of high-resolution phantom images using cGAN: Application to quantification of Ki67 breast cancer images.

PloS one
In pathology, Immunohistochemical staining (IHC) of tissue sections is regularly used to diagnose and grade malignant tumors. Typically, IHC stain interpretation is rendered by a trained pathologist using a manual method, which consists of counting e...

Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning.

PloS one
The World Health Organization (WHO) has clear guidelines regarding the use of Ki67 index in defining the proliferative rate and assigning grade for pancreatic neuroendocrine tumor (NET). WHO mandates the quantification of Ki67 index by counting at le...

An Advanced Deep Learning Approach for Ki-67 Stained Hotspot Detection and Proliferation Rate Scoring for Prognostic Evaluation of Breast Cancer.

Scientific reports
Being a non-histone protein, Ki-67 is one of the essential biomarkers for the immunohistochemical assessment of proliferation rate in breast cancer screening and grading. The Ki-67 signature is always sensitive to radiotherapy and chemotherapy. Due t...

Investigation of serum Ki-67 as a biomarker in tumor-bearing dogs.

Research in veterinary science
Because of the limited number of tumor markers in veterinary medicine, there is need for identifying new markers. Ki-67 has been investigated as a tissue marker of malignant alterations. We hypothesized that Ki-67 would also be measurable in serum an...