AIMC Topic: Kidney Transplantation

Clear Filters Showing 11 to 20 of 192 articles

Development of a natural language processing algorithm to extract social determinants of health from clinician notes.

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
Disparities in access to the organ transplant waitlist are well-documented, but research into modifiable factors has been limited due to a lack of access to organized prewaitlisting data. This study aimed to develop a natural language processing (NLP...

Artificial intelligence in kidney transplantation: a 30-year bibliometric analysis of research trends, innovations, and future directions.

Renal failure
Kidney transplantation is the definitive treatment for end-stage renal disease (ESRD), yet challenges persist in optimizing donor-recipient matching, postoperative care, and immunosuppressive strategies. This study employs bibliometric analysis to ev...

Developing clinical prognostic models to predict graft survival after renal transplantation: comparison of statistical and machine learning models.

BMC medical informatics and decision making
INTRODUCTION: Renal transplantation is a critical treatment for end-stage renal disease, but graft failure remains a significant concern. Accurate prediction of graft survival is crucial to identify high-risk patients. This study aimed to develop pro...

Advancing health equity: evaluating AI translations of kidney donor information for Spanish speakers.

Frontiers in public health
BACKGROUND: Health equity and access to essential medical information remain significant challenges, especially for the Spanish-speaking Hispanic population, which faces barriers in accessing living kidney donation opportunities. ChatGPT, an AI langu...

Artificial intelligence assisted risk prediction in organ transplantation: a UK Live-Donor Kidney Transplant Outcome Prediction tool.

Renal failure
Predicting the outcome of a kidney transplant involving a living donor advances donor decision-making donors for clinicians and patients. However, the discriminative or calibration capacity of the currently employed models are limited. We set out to...

Challenges in standardizing preimplantation kidney biopsy assessments and the potential of AI-Driven solutions.

Current opinion in nephrology and hypertension
PURPOSE OF REVIEW: This review explores the variability in preimplantation kidney biopsy processing methods, emphasizing their impact on histological interpretation and allocation decisions driven by biopsy findings. With the increasing use of artifi...

Assessing donor kidney function: the role of CIRBP in predicting delayed graft function post-transplant.

Frontiers in immunology
INTRODUCTION: Delayed graft function (DGF) shortens the survival time of transplanted kidneys and increases the risk of rejection. Current methods are inadequate in predicting DGF. More precise tools are required to assess kidney suitability for tran...

Unveiling the intricate interplay: Exploring biological bridges between renal ischemia-reperfusion injury and T cell-mediated immune rejection in kidney transplantation.

PloS one
UNLABELLED: Although the link between ischemia-reperfusion injury (IRI) and T cell-mediated rejection (TCMR) in kidney transplantation (KT) is well known, the mechanism remains unclear. We investigated essential genes and biological processes involve...

TransformerLSR: Attentive joint model of longitudinal data, survival, and recurrent events with concurrent latent structure.

Artificial intelligence in medicine
In applications such as biomedical studies, epidemiology, and social sciences, recurrent events often co-occur with longitudinal measurements and a terminal event, such as death. Therefore, jointly modeling longitudinal measurements, recurrent events...