AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Liver Neoplasms

Showing 81 to 90 of 714 articles

Clear Filters

Machine learning approach identifies inflammatory gene signature for predicting survival outcomes in hepatocellular carcinoma.

Scientific reports
BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, often linked to chronic inflammation. Our study aimed to probe inflammation pathways at the genetic level and pinpoint biomarkers linked to HCC patient ...

Liver tumor segmentation method combining multi-axis attention and conditional generative adversarial networks.

PloS one
In modern medical imaging-assisted therapies, manual annotation is commonly employed for liver and tumor segmentation in abdominal CT images. However, this approach suffers from low efficiency and poor accuracy. With the development of deep learning,...

Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques.

Scientific reports
Hepatocellular carcinoma (HCC) represents a significant health burden in Egypt, largely attributable to the endemic prevalence of hepatitis B and C viruses. Early identification of HCC remains a challenge due to the lack of widespread screening among...

F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study.

BMC cancer
BACKGROUND: This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in F-FDG PET/CT images.

Radiomics-based automated machine learning for differentiating focal liver lesions on unenhanced computed tomography.

Abdominal radiology (New York)
BACKGROUND & AIMS: Enhanced computed tomography (CT) is the primary method for focal liver lesion diagnosis. We aimed to use automated machine learning (AutoML) algorithms to differentiate between benign and malignant focal liver lesions on the basis...

Generalizability of lesion detection and segmentation when ScaleNAS is trained on a large multi-organ dataset and validated in the liver.

Medical physics
BACKGROUND: Tumor assessment through imaging is crucial for diagnosing and treating cancer. Lesions in the liver, a common site for metastatic disease, are particularly challenging to accurately detect and segment. This labor-intensive task is subjec...