AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Liver

Showing 11 to 20 of 556 articles

Clear Filters

Deep Learning-Based Auto-Segmentation for Liver Yttrium-90 Selective Internal Radiation Therapy.

Technology in cancer research & treatment
The aim was to evaluate a deep learning-based auto-segmentation method for liver delineation in Y-90 selective internal radiation therapy (SIRT). A deep learning (DL)-based liver segmentation model using the U-Net3D architecture was built. Auto-segme...

Deep Learning-Based Tumor Segmentation of Murine Magnetic Resonance Images of Prostate Cancer Patient-Derived Xenografts.

Tomography (Ann Arbor, Mich.)
BACKGROUND/OBJECTIVE: Longitudinal in vivo studies of murine xenograft models are widely utilized in oncology to study cancer biology and develop therapies. Magnetic resonance imaging (MRI) of these tumors is an invaluable tool for monitoring tumor g...

ResTransUNet: A hybrid CNN-transformer approach for liver and tumor segmentation in CT images.

Computers in biology and medicine
BACKGROUND AND OBJECTIVE: Accurate medical tumor segmentation is critical for early diagnosis and treatment planning, significantly improving patient outcomes. This study aims to enhance liver and tumor segmentation from CT and liver images by develo...

A deep learning model trained on expressed transcripts across different tissue types reveals cell-type codon-optimization preferences.

Nucleic acids research
Species-specific differences in protein translation can affect the design of protein-based drugs. Consequently, efficient expression of recombinant proteins often requires codon optimization. Publicly available optimization tools do not always result...

Identifying liver cirrhosis in patients with chronic hepatitis B: an interpretable machine learning algorithm based on LSM.

Annals of medicine
BACKGROUND: Chronic hepatitis B (CHB) is a common cause of liver cirrhosis (LC), a condition associated with an unfavourable prognosis. Therefore, timely diagnosis of LC in CHB patients is crucial.

Liver margin segmentation in abdominal CT images using U-Net and Detectron2: annotated dataset for deep learning models.

Scientific reports
The segmentation of liver margins in computed tomography (CT) images presents significant challenges due to the complex anatomical variability of the liver, with critical implications for medical diagnostics and treatment planning. In this study, we ...

Characterization of fibrotic liver tissue microstructure for predicting shear wave speed variability: a machine-learning-based computational study.

Physics in medicine and biology
This study aimed to establish a link between the microstructure of simulated fibrotic liver tissues and the measured shear wave speed (SWS) variability using a machine-learning (ML)-based approach.. Fibrotic liver tissues were simulated using biphasi...

Deep learning-based reconstruction and superresolution for MR-guided thermal ablation of malignant liver lesions.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: This study evaluates the impact of deep learning-enhanced T1-weighted VIBE sequences (DL-VIBE) on image quality and procedural parameters during MR-guided thermoablation of liver malignancies, compared to standard VIBE (SD-VIBE).

Evaluating the dosimetric and positioning accuracy of a deep learning based synthetic-CT model for liver radiotherapy treatment planning.

Biomedical physics & engineering express
An MRI-only workflow requires synthetic computed tomography (sCT) images to enable dose calculation. This study evaluated the dosimetric and patient positioning accuracy of deep learning-generated sCT for liver radiotherapy.sCT images were generated ...

Unsupervised Test-Time Adaptation for Hepatic Steatosis Grading Using Ultrasound B-Mode Images.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Ultrasound (US) is considered a key modality for the clinical assessment of hepatic steatosis (i.e., fatty liver) due to its noninvasiveness and availability. Deep learning methods have attracted considerable interest in this field, as they are capab...