AIMC Topic: Machine Learning

Clear Filters Showing 181 to 190 of 31144 articles

Using graph machine learning to identify functioning in patients with low back pain in terms of ICF.

Scientific reports
As a comprehensive perspective on functioning is useful in patient assessments, the WHO developed the International Classification of Functioning, Disability, and Health (ICF) to provide a standardized terminology and framework for describing and cla...

Recognition of anxiety and depression using gait data recorded by the kinect sensor: a machine learning approach with data augmentation.

Scientific reports
Anxiety and depression disorders are increasingly common, necessitating methods for real-time assessment and early identification. This study investigates gait analysis as a potential indicator of mental health, using the Microsoft Kinect sensor to c...

Implementing partial least squares and machine learning regressive models for prediction of drug release in targeted drug delivery application.

Scientific reports
A combined methodology was performed based on chemometrics and machine learning regressive models in estimation of polysaccharide-coated colonic drug delivery. The release of medication was measured using Raman spectroscopy and the data was used for ...

Optimizing the early diagnosis of neurological disorders through the application of machine learning for predictive analytics in medical imaging.

Scientific reports
Early diagnosis of Neurological Disorders (ND) such as Alzheimer's disease (AD) and Brain Tumors (BT) can be highly challenging since these diseases cause minor changes in the brain's anatomy. Magnetic Resonance Imaging (MRI) is a vital tool for diag...

A multi-modal graph-based framework for Alzheimer's disease detection.

Scientific reports
We propose a compositional graph-based Machine Learning (ML) framework for Alzheimer's disease (AD) detection that constructs complex ML predictors from modular components. In our directed computational graph, datasets are represented as nodes [Formu...

Comparative study of five-year cervical cancer cause-specific survival prediction models based on SEER data.

Scientific reports
Cervical cancer (CC) is a major cause of mortality in women, with stagnant survival rates, highlighting the need for improved prognostic models. This study aims to develop and compare machine learning models for predicting five-year cause-specific su...

GAINSeq: glaucoma pre-symptomatic detection using machine learning models driven by next-generation sequencing data.

Scientific reports
Congenital glaucoma, a complex and diverse condition, presents considerable difficulties in its identification and categorization. This research used Next Generation Sequencing (NGS) whole-exome data to create a categorization framework using machine...

Exploring the link between the ZJU index and sarcopenia in adults aged 20-59 using NHANES and machine learning.

Scientific reports
Sarcopenia, characterized by progressive loss of muscle mass and function, is a growing public health concern. The ZJU index, a novel metabolic marker, integrates lipid metabolism and glucose regulation parameters. While its association with metaboli...

Cognition-enhanced geospatial decision framework integrating fuzzy FCA, surprisingly popular method, and a large language model.

Scientific reports
This study introduces a cognition-enhanced framework for geospatial decision-making by integrating Fuzzy Formal Concept Analysis (FCA), the Surprisingly Popular (SP) method, and a Large Language Model (GPT-4o). Our approach captures cognitive influen...

Automated grading of rectocele with an MRI radiomics model.

Scientific reports
To develop an automated grading model for rectocele (RC) based on radiomics and evaluate its efficacy. This study retrospectively analyzed a total of 9,392 magnetic resonance imaging (MRI) images obtained from 222 patients who underwent dynamic magne...