OBJECTIVE: Preoperative prediction of visual recovery after pituitary adenoma resection surgery remains challenging. This study aimed to investigate the value of clinical and radiological features in preoperatively predicting visual outcomes after su...
OBJECTIVE: To explore the value of combined radiomics and deep learning models using different machine learning algorithms based on mammography (MG) and magnetic resonance imaging (MRI) for predicting axillary lymph node metastasis (ALNM) in breast c...
BACKGROUND: Alzheimer's Disease (AD) poses a major challenge as a neurodegenerative disorder, and early detection is critical for effective intervention. Magnetic resonance imaging (MRI) is a critical tool in AD research due to its availability and c...
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the pred...
A deep comparative analysis of brain functional connectome across species in primates has the potential to yield valuable insights for both scientific and clinical applications. However, the interspecies commonality and differences are inherently ent...
BACKGROUND: Understanding the mechanisms of algorithmic bias is highly challenging due to the complexity and uncertainty of how various unknown sources of bias impact deep learning models trained with medical images. This study aims to bridge this kn...
PURPOSES: This study aimed to assess the effectiveness of Super-Resolution Deep Learning Reconstruction (SR-DLR) -a deep learning-based technique that enhances image resolution and quality during MRI reconstruction- in improving the image quality of ...
OBJECTIVES: Neonatal hypoxic-ischemic encephalopathy is a serious neurologic condition associated with death or neurodevelopmental impairments. Magnetic resonance imaging (MRI) is routinely used for neuroprognostication, but there is substantial subj...
BACKGROUND: High-resolution (HR) 3D MR images provide detailed soft-tissue information that is useful in assessing long-term side-effects after treatment in childhood cancer survivors, such as morphological changes in brain structures. However, these...