AI Medical Compendium Topic:
Magnetic Resonance Imaging

Clear Filters Showing 641 to 650 of 5861 articles

Distinct connectivity patterns between perception and attention-related brain networks characterize dyslexia: Machine learning applied to resting-state fMRI.

Cortex; a journal devoted to the study of the nervous system and behavior
Diagnosis of dyslexia often occurs in late schooling years, leading to academic and psychological challenges. Furthermore, diagnosis is time-consuming, costly, and reliant on arbitrary cutoffs. On the other hand, automated algorithms hold great poten...

Automated assessment of brain MRIs in multiple sclerosis patients significantly reduces reading time.

Neuroradiology
INTRODUCTION: Assessment of multiple sclerosis (MS) lesions on magnetic resonance imaging (MRI) is tedious, time-consuming, and error-prone. We evaluate whether assessment of new, expanding, and contrast-enhancing MS lesions can be done more time-eff...

Segmentation and classification of brain tumor using Taylor fire hawk optimization enabled deep learning approach.

Electromagnetic biology and medicine
The brain is a crucial organ that controls the body's neural system. The tumor develops and spreads across the brain as a result of irregular cell generation. The provision of substantial treatment to patients requires the early diagnosis of malignan...

Deep learning automatically distinguishes myocarditis patients from normal subjects based on MRI.

The international journal of cardiovascular imaging
Myocarditis, characterized by inflammation of the myocardial tissue, presents substantial risks to cardiovascular functionality, potentially precipitating critical outcomes including heart failure and arrhythmias. This investigation primarily aims to...

Machine-learning based prediction of future outcome using multimodal MRI during early childhood.

Seminars in fetal & neonatal medicine
The human brain undergoes rapid changes from the fetal stage to two years postnatally, during which proper structural and functional maturation lays the foundation for later cognitive and behavioral development. Multimodal magnetic resonance imaging ...

The Segment Anything foundation model achieves favorable brain tumor auto-segmentation accuracy in MRI to support radiotherapy treatment planning.

Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
BACKGROUND: Promptable foundation auto-segmentation models like Segment Anything (SA, Meta AI, New York, USA) represent a novel class of universal deep learning auto-segmentation models that could be employed for interactive tumor auto-contouring in ...

Improved patient identification by incorporating symptom severity in deep learning using neuroanatomic images in first episode schizophrenia.

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
Brain alterations associated with illness severity in schizophrenia remain poorly understood. Establishing linkages between imaging biomarkers and symptom expression may enhance mechanistic understanding of acute psychotic illness. Constructing model...

A simple but tough-to-beat baseline for fMRI time-series classification.

NeuroImage
Current neuroimaging studies frequently use complex machine learning models to classify human fMRI data, distinguishing healthy and disordered brains, often to validate new methods or enhance prediction accuracy. Yet, where prediction accuracy is a c...

Automated detection of bone lesions using CT and MRI: a systematic review.

La Radiologia medica
PURPOSE: The aim of this study was to systematically review the use of automated detection systems for identifying bone lesions based on CT and MRI, focusing on advancements in artificial intelligence (AI) applications.