AIMC Topic: Melanoma

Clear Filters Showing 41 to 50 of 348 articles

A vision-language foundation model for precision oncology.

Nature
Clinical decision-making is driven by multimodal data, including clinical notes and pathological characteristics. Artificial intelligence approaches that can effectively integrate multimodal data hold significant promise in advancing clinical care. H...

Melanoma Breslow Thickness Classification Using Ensemble-Based Knowledge Distillation With Semi-Supervised Convolutional Neural Networks.

IEEE journal of biomedical and health informatics
Melanoma is considered a global public health challenge and is responsible for more than 90% deaths related to skin cancer. Although the diagnosis of early melanoma is the main goal of dermoscopy, the discrimination between dermoscopic images of in s...

Deep learning on CT scans to predict checkpoint inhibitor treatment outcomes in advanced melanoma.

Scientific reports
Immune checkpoint inhibitor (ICI) treatment has proven successful for advanced melanoma, but is associated with potentially severe toxicity and high costs. Accurate biomarkers for response are lacking. The present work is the first to investigate the...

The Depth Estimation and Visualization of Dermatological Lesions: Development and Usability Study.

JMIR dermatology
BACKGROUND: Thus far, considerable research has been focused on classifying a lesion as benign or malignant. However, there is a requirement for quick depth estimation of a lesion for the accurate clinical staging of the lesion. The lesion could be m...

Effect of patient-contextual skin images in human- and artificial intelligence-based diagnosis of melanoma: Results from the 2020 SIIM-ISIC melanoma classification challenge.

Journal of the European Academy of Dermatology and Venereology : JEADV
BACKGROUND: While the high accuracy of reported AI tools for melanoma detection is promising, the lack of holistic consideration of the patient is often criticized. Along with medical history, a dermatologist would also consider intra-patient nevi pa...

Going Smaller: Attention-based models for automated melanoma diagnosis.

Computers in biology and medicine
Computational approaches offer a valuable tool to aid with the early diagnosis of melanoma by increasing both the speed and accuracy of doctors' decisions. The latest and best-performing approaches often rely on large ensemble models, with the number...

Integrated explainable machine learning and multi-omics analysis for survival prediction in cancer with immunotherapy response.

Apoptosis : an international journal on programmed cell death
To demonstrate the efficacy of machine learning models in predicting mortality in melanoma cancer, we developed an interpretability model for better understanding the survival prediction of cancer. To this end, the optimal features were identified, t...

Classification of melanoma skin Cancer based on Image Data Set using different neural networks.

Scientific reports
This paper aims to address the pressing issue of melanoma classification by leveraging advanced neural network models, specifically basic Convolutional Neural Networks (CNN), ResNet-18, and EfficientNet-B0. Our objectives encompass presenting and eva...