AIMC Topic:
Middle Aged

Clear Filters Showing 1831 to 1840 of 14390 articles

The influence of factors related to public health campaigns on vaccination behavior among population of Wuxi region, China.

Frontiers in public health
BACKGROUND: Public health campaigns are essential for promoting vaccination behavior, but factors such as socioeconomic status, geographical location, campaign quality, and service accessibility influence vaccine uptake. In the Wuxi region of China, ...

Accelerated High-resolution T1- and T2-weighted Breast MRI with Deep Learning Super-resolution Reconstruction.

Academic radiology
RATIONALE AND OBJECTIVES: To assess the performance of an industry-developed deep learning (DL) algorithm to reconstruct low-resolution Cartesian T1-weighted dynamic contrast-enhanced (T1w) and T2-weighted turbo-spin-echo (T2w) sequences and compare ...

Machine Learning Approach for Sepsis Risk Assessment in Ischemic Stroke Patients.

Journal of intensive care medicine
BackgroundIschemic stroke is a critical neurological condition, with infection representing a significant aspect of its clinical management. Sepsis, a life-threatening organ dysfunction resulting from infection, is among the most dangerous complicati...

Interpretable CT Radiomics-based Machine Learning Model for Preoperative Prediction of Ki-67 Expression in Clear Cell Renal Cell Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).

Performance evaluation of a machine learning-based methodology using dynamical features to detect nonwear intervals in actigraphy data in a free-living setting.

Sleep health
GOAL AND AIMS: One challenge using wearable sensors is nonwear time. Without a nonwear (e.g., capacitive) sensor, actigraphy data quality can be biased by subjective determinations confounding sleep/wake classification. We developed and evaluated a m...

Traditional versus modern approaches to screening mammography: a comparison of computer-assisted detection for synthetic 2D mammography versus an artificial intelligence algorithm for digital breast tomosynthesis.

Breast cancer research and treatment
PURPOSE: Traditional computer-assisted detection (CADe) algorithms were developed for 2D mammography, while modern artificial intelligence (AI) algorithms can be applied to 2D mammography and/or digital breast tomosynthesis (DBT). The objective is to...

Evaluation of machine learning models for predicting xerostomia in adults with head and neck cancer during proton and heavy ion radiotherapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Few studies have examined the factors associated with xerostomia during proton and carbon ion radiotherapy for head and neck cancer (HNC), which are reported to have fewer toxic effects compared to traditional photon-based rad...

Automated stenosis estimation of coronary angiographies using end-to-end learning.

The international journal of cardiovascular imaging
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consumin...

Multimodal deep learning for predicting in-hospital mortality in heart failure patients using longitudinal chest X-rays and electronic health records.

The international journal of cardiovascular imaging
Amid an aging global population, heart failure has become a leading cause of hospitalization among older people. Its high prevalence and mortality rates underscore the importance of accurate mortality prediction for swift disease progression assessme...

Prediction of Aneurysm Sac Shrinkage After Endovascular Aortic Repair Using Machine Learning-Based Decision Tree Analysis.

The Journal of surgical research
INTRODUCTION: A simple risk stratification model to predict aneurysm sac shrinkagein patients undergoing endovascular aortic repair (EVAR) for abdominal aortic aneurysms (AAA) was developed using machine learning-based decision tree analysis.