IMPORTANCE: Uncomplicated urinary tract infection (UTI) is a common indication for outpatient antimicrobial therapy. National guidelines for the management of uncomplicated UTI were published in 2011, but the extent to which they align with current p...
This study investigates the impact of patient stress on COVID-19 screening. An attempt was made to measure the level of anxiety of individuals undertaking rapid tests for SARS-CoV-2. To this end, a galvanic skin response (GSR) sensor that was connect...
IMPORTANCE: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-correc...
Accurate and continuous blood glucose monitoring is essential for effective diabetes management, yet traditional finger pricking methods are often inconvenient and painful. To address this issue, photoplethysmography (PPG) presents a promising non-in...
This study aims to construct and validate noninvasive diagnosis models for evaluating significant liver fibrosis in patients with chronic hepatitis B (CHB). A cohort of 259 CHB patients were selected as research subjects. Through random grouping, 182...
BACKGROUND: Prior studies have demonstrated an association between retinal vascular features and cardiovascular disease (CVD), however most studies have only evaluated a few simple parameters at a time. Our aim was to determine whether a deep-learnin...
BACKGROUND: Primary Sjogren's syndrome (pSS) and autoimmune thyroiditis (AIT) share overlapping genetic and immunological profiles. This retrospective study evaluates the efficacy of machine learning algorithms, with a focus on the Random Forest Clas...
Multiple artificial intelligence systems have been created to facilitate accurate and prompt histopathological diagnosis of tumors using hematoxylin-eosin-stained slides. We aimed to investigate whether weakly supervised deep learning can aid in glio...
A dual-stage model for classifying Parkinson's disease severity, through a detailed analysis of Gait signals using force sensors and machine learning approaches, is proposed in this study. Parkinson's disease is the primary neurodegenerative disorder...
Community-acquired pneumonia (CAP) is associated with high mortality rates and often results in prolonged hospital stays. The potential of machine learning to enhance prediction accuracy in this context is significant, yet clinicians often lack the p...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.