AIMC Topic:
Middle Aged

Clear Filters Showing 1951 to 1960 of 14390 articles

Use of Machine Learning to Assess the Management of Uncomplicated Urinary Tract Infection.

JAMA network open
IMPORTANCE: Uncomplicated urinary tract infection (UTI) is a common indication for outpatient antimicrobial therapy. National guidelines for the management of uncomplicated UTI were published in 2011, but the extent to which they align with current p...

Stress Monitoring in Pandemic Screening: Insights from GSR Sensor and Machine Learning Analysis.

Biosensors
This study investigates the impact of patient stress on COVID-19 screening. An attempt was made to measure the level of anxiety of individuals undertaking rapid tests for SARS-CoV-2. To this end, a galvanic skin response (GSR) sensor that was connect...

Estimating Visual Acuity With Spectacle Correction From Fundus Photos Using Artificial Intelligence.

JAMA network open
IMPORTANCE: Determining spectacle-corrected visual acuity (VA) is essential when managing many ophthalmic diseases. If artificial intelligence (AI) evaluations of macular images estimated this VA from a fundus image, AI might provide spectacle-correc...

Non-invasive blood glucose monitoring using PPG signals with various deep learning models and implementation using TinyML.

Scientific reports
Accurate and continuous blood glucose monitoring is essential for effective diabetes management, yet traditional finger pricking methods are often inconvenient and painful. To address this issue, photoplethysmography (PPG) presents a promising non-in...

Noninvasive diagnosis of significant liver fibrosis in patients with chronic hepatitis B using nomogram and machine learning models.

Scientific reports
This study aims to construct and validate noninvasive diagnosis models for evaluating significant liver fibrosis in patients with chronic hepatitis B (CHB). A cohort of 259 CHB patients were selected as research subjects. Through random grouping, 182...

Predicting autoimmune thyroiditis in primary Sjogren's syndrome patients using a random forest classifier: a retrospective study.

Arthritis research & therapy
BACKGROUND: Primary Sjogren's syndrome (pSS) and autoimmune thyroiditis (AIT) share overlapping genetic and immunological profiles. This retrospective study evaluates the efficacy of machine learning algorithms, with a focus on the Random Forest Clas...

Weakly supervised deep learning-based classification for histopathology of gliomas: a single center experience.

Scientific reports
Multiple artificial intelligence systems have been created to facilitate accurate and prompt histopathological diagnosis of tumors using hematoxylin-eosin-stained slides. We aimed to investigate whether weakly supervised deep learning can aid in glio...

Gait-based Parkinson's disease diagnosis and severity classification using force sensors and machine learning.

Scientific reports
A dual-stage model for classifying Parkinson's disease severity, through a detailed analysis of Gait signals using force sensors and machine learning approaches, is proposed in this study. Parkinson's disease is the primary neurodegenerative disorder...

Employing a low-code machine learning approach to predict in-hospital mortality and length of stay in patients with community-acquired pneumonia.

Scientific reports
Community-acquired pneumonia (CAP) is associated with high mortality rates and often results in prolonged hospital stays. The potential of machine learning to enhance prediction accuracy in this context is significant, yet clinicians often lack the p...