AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Multiparametric Magnetic Resonance Imaging

Showing 11 to 20 of 129 articles

Clear Filters

Development and Validation of a Machine Learning Radiomics Model based on Multiparametric MRI for Predicting Progesterone Receptor Expression in Meningioma: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to develop and validate a machine learning-based prediction model for preoperatively predicting progesterone receptor (PR) expression in meningioma patients using multiparametric magnetic resonance imaging (...

Interpretable machine learning model for predicting clinically significant prostate cancer: integrating intratumoral and peritumoral radiomics with clinical and metabolic features.

BMC medical imaging
BACKGROUND: To develop and validate an interpretable machine learning model based on intratumoral and peritumoral radiomics combined with clinicoradiological features and metabolic information from magnetic resonance spectroscopy (MRS), to predict cl...

Deep learning-based prediction of tumor aggressiveness in RCC using multiparametric MRI: a pilot study.

International urology and nephrology
OBJECTIVE: To investigate the value of multiparametric magnetic resonance imaging (MRI) as a non-invasive method to predict the aggressiveness of renal cell carcinoma (RCC) by developing a convolutional neural network (CNN) model and fusing it with c...

Automated Classification of Body MRI Sequences Using Convolutional Neural Networks.

Academic radiology
RATIONALE AND OBJECTIVES: Multi-parametric MRI (mpMRI) studies of the body are routinely acquired in clinical practice. However, a standardized naming convention for MRI protocols and series does not exist currently. Conflicts in the series descripti...

Deep learning-based overall survival prediction in patients with glioblastoma: An automatic end-to-end workflow using pre-resection basic structural multiparametric MRIs.

Computers in biology and medicine
PURPOSE: Accurate and automated early survival prediction is critical for patients with glioblastoma (GBM) as their poor prognosis requires timely treatment decision-making. To address this need, we developed a deep learning (DL)-based end-to-end wor...

Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma.

Nature communications
Pediatric low-grade gliomas (pLGGs) exhibit heterogeneous prognoses and variable responses to treatment, leading to tumor progression and adverse outcomes in cases where complete resection is unachievable. Early prediction of treatment responsiveness...