AIMC Topic: Mutation

Clear Filters Showing 361 to 370 of 649 articles

Fully-Connected Neural Networks with Reduced Parameterization for Predicting Histological Types of Lung Cancer from Somatic Mutations.

Biomolecules
Several challenges appear in the application of deep learning to genomic data. First, the dimensionality of input can be orders of magnitude greater than the number of samples, forcing the model to be prone to overfitting the training dataset. Second...

A machine learning approach to optimizing cell-free DNA sequencing panels: with an application to prostate cancer.

BMC cancer
BACKGROUND: Cell-free DNA's (cfDNA) use as a biomarker in cancer is challenging due to genetic heterogeneity of malignancies and rarity of tumor-derived molecules. Here we describe and demonstrate a novel machine-learning guided panel design strategy...

Deep Learning Modeling of Androgen Receptor Responses to Prostate Cancer Therapies.

International journal of molecular sciences
Gain-of-function mutations in human androgen receptor (AR) are among the major causes of drug resistance in prostate cancer (PCa). Identifying mutations that cause resistant phenotype is of critical importance for guiding treatment protocols, as well...

A machine learning framework to trace tumor tissue-of-origin of 13 types of cancer based on DNA somatic mutation.

Biochimica et biophysica acta. Molecular basis of disease
Carcinoma of unknown primary (CUP), defined as metastatic cancers with unknown cancer origin, occurs in 3-5 per 100 cancer patients in the United States. Heterogeneity and metastasis of cancer brings great difficulties to the follow-up diagnosis and ...

Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data.

Genes
With the high prevalence of breast cancer, it is urgent to find out the intrinsic difference between various subtypes, so as to infer the underlying mechanisms. Given the available multi-omics data, their proper integration can improve the accuracy o...

Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.

Nature cancer
We use deep transfer learning to quantify histopathological patterns across 17,355 hematoxylin and eosin-stained histopathology slide images from 28 cancer types and correlate these with matched genomic, transcriptomic and survival data. This approac...

Pan-cancer image-based detection of clinically actionable genetic alterations.

Nature cancer
Molecular alterations in cancer can cause phenotypic changes in tumor cells and their micro-environment. Routine histopathology tissue slides - which are ubiquitously available - can reflect such morphological changes. Here, we show that deep learnin...

Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer.

British journal of cancer
BACKGROUND: Radiogenomics is an emerging field that integrates "Radiomics" and "Genomics". In the current study, we aimed to predict the genetic information of pancreatic tumours in a simple, inexpensive, and non-invasive manner, using cancer imaging...

Cross-species regulatory sequence activity prediction.

PLoS computational biology
Machine learning algorithms trained to predict the regulatory activity of nucleic acid sequences have revealed principles of gene regulation and guided genetic variation analysis. While the human genome has been extensively annotated and studied, mod...