AIMC Topic: Mutation

Clear Filters Showing 31 to 40 of 664 articles

Prediction of EGFR Mutations in Lung Adenocarcinoma via CT Images: A Comparative Study of Intratumoral and Peritumoral Radiomics, Deep Learning, and Fusion Models.

Academic radiology
RATIONALE AND OBJECTIVES: This study aims to analyze the intratumoral and peritumoral characteristics of lung adenocarcinoma patients on the basis of chest CT images via radiomic and deep learning methods and to develop and validate a multimodel fusi...

Semisupervised adaptive learning models for IDH1 mutation status prediction.

PloS one
The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent yea...

AI designed, mutation resistant broad neutralizing antibodies against multiple SARS-CoV-2 strains.

Scientific reports
In this study, we developed a digital twin for SARS-CoV-2 by integrating diverse data and metadata with multiple data types and processing strategies, including machine learning, natural language processing, protein structural modeling, and protein s...

Surgical and radiological outcomes of giant cell tumor of the bone: prognostic value of Campanacci grading and selective use of denosumab.

Journal of orthopaedics and traumatology : official journal of the Italian Society of Orthopaedics and Traumatology
BACKGROUND: Advancements in diagnostic and therapeutic modalities for giant cell tumors of bone (GCTB) have introduced molecular and radiological tools that refine clinical decision-making. H3.3 G34W immunohistochemical staining has become a routine ...

Evolutionary Dynamics and Functional Differences in Clinically Relevant Pen β-Lactamases from spp.

Journal of chemical information and modeling
Antimicrobial resistance (AMR) is a global threat, with species contributing significantly to difficult-to-treat infections. The Pen family of β-lactamases are produced by all spp., and their mutation or overproduction leads to the resistance of β-...

Deep learning model for predicting the RAS oncogene status in colorectal cancer liver metastases.

Journal of cancer research and therapeutics
BACKGROUND: To develop a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CECT) to assess the rat sarcoma (RAS) oncogene status and predict targeted therapy response in colorectal cancer liver metastases (CRLM).

Machine learning in prediction of epidermal growth factor receptor status in non-small cell lung cancer brain metastases: a systematic review and meta-analysis.

BMC cancer
BACKGROUND: Epidermal growth factor receptor (EGFR) mutations are present in 10-60% of all non-small cell lung cancer (NSCLC) patients and are associated with dismal prognosis. Lung cancer brain metastases (LCBM) are a common complication of lung can...

Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas.

Journal of thoracic imaging
PURPOSE: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities t...

Statistical algorithms for the analysis of deleterious genetic mutations.

Bio Systems
We present algorithms for model selection and parameter estimation concerning deleterious genetic mutations. Three models are considered: single gene mutation, double cross-effect mutations or no genetic cause. Each of these models include unknown pa...

A systematic evaluation of the language-of-viral-escape model using multiple machine learning frameworks.

Journal of the Royal Society, Interface
Predicting the evolutionary patterns of emerging and endemic viruses is key for mitigating their spread. In particular, it is critical to rapidly identify mutations with the potential for immune escape or increased disease burden. Knowing which circu...