AIMC Topic: Mutation

Clear Filters Showing 391 to 400 of 649 articles

Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network.

Scientific reports
Identification of genotypes is crucial for treatment of glioma. Here, we developed a method to predict tumor genotypes using a pretrained convolutional neural network (CNN) from magnetic resonance (MR) images and compared the accuracy to that of a di...

Integrated structural modeling and super-resolution imaging resolve GPCR oligomers.

Progress in molecular biology and translational science
Formation of G protein-coupled receptors (GPCRs) dimers and higher order oligomers represents a key mechanism in pleiotropic signaling, yet how individual protomers function within oligomers remains poorly understood. For the Class A/rhodopsin subfam...

Predictive models for patients with lung carcinomas to identify EGFR mutation status via an artificial neural network based on multiple clinical information.

Journal of cancer research and clinical oncology
PURPOSE: Epidermal growth factor receptor (EGFR) mutation testing has several limitations. Therefore, we built predictive models to determine the EGFR mutation status of patients and guide therapeutic decision-making.

Evaluation of colorectal cancer subtypes and cell lines using deep learning.

Life science alliance
Colorectal cancer (CRC) is a common cancer with a high mortality rate and a rising incidence rate in the developed world. Molecular profiling techniques have been used to better understand the variability between tumors and disease models such as cel...

Ranking of non-coding pathogenic variants and putative essential regions of the human genome.

Nature communications
A gene is considered essential if loss of function results in loss of viability, fitness or in disease. This concept is well established for coding genes; however, non-coding regions are thought less likely to be determinants of critical functions. H...

CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network.

Scientific reports
With recent advances in DNA sequencing technologies, fast acquisition of large-scale genomic data has become commonplace. For cancer studies, in particular, there is an increasing need for the classification of cancer type based on somatic alteration...

SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance.

Science advances
We evaluated SpCas9 activities at 12,832 target sequences using a high-throughput approach based on a human cell library containing single-guide RNA-encoding and target sequence pairs. Deep learning-based training on this large dataset of SpCas9-indu...

DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity.

Frontiers in immunology
Neoantigens play important roles in cancer immunotherapy. Current methods used for neoantigen prediction focus on the binding between human leukocyte antigens (HLAs) and peptides, which is insufficient for high-confidence neoantigen prediction. In th...