AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Mutation

Showing 391 to 400 of 598 articles

Clear Filters

Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning.

Nature biomedical engineering
Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time an...

NeoMutate: an ensemble machine learning framework for the prediction of somatic mutations in cancer.

BMC medical genomics
BACKGROUND: The accurate screening of tumor genomic landscapes for somatic mutations using high-throughput sequencing involves a crucial step in precise clinical diagnosis and targeted therapy. However, the complex inherent features of cancer tissue,...

Toward automatic prediction of EGFR mutation status in pulmonary adenocarcinoma with 3D deep learning.

Cancer medicine
To develop a deep learning system based on 3D convolutional neural networks (CNNs), and to automatically predict EGFR-mutant pulmonary adenocarcinoma in CT images. A dataset of 579 nodules with EGFR mutation status labels of mutant (Mut) or wild-type...

Selene: a PyTorch-based deep learning library for sequence data.

Nature methods
To enable the application of deep learning in biology, we present Selene (https://selene.flatironinstitute.org/), a PyTorch-based deep learning library for fast and easy development, training, and application of deep learning model architectures for ...

Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning.

The European respiratory journal
Epidermal growth factor receptor (EGFR) genotyping is critical for treatment guidelines such as the use of tyrosine kinase inhibitors in lung adenocarcinoma. Conventional identification of EGFR genotype requires biopsy and sequence testing which is i...

LUADpp: an effective prediction model on prognosis of lung adenocarcinomas based on somatic mutational features.

BMC cancer
BACKGROUND: Lung adenocarcinoma is the most common type of lung cancers. Whole-genome sequencing studies disclosed the genomic landscape of lung adenocarcinomas. however, it remains unclear if the genetic alternations could guide prognosis prediction...

Biochemical, machine learning and molecular approaches for the differential diagnosis of Mucopolysaccharidoses.

Molecular and cellular biochemistry
This study was aimed to construct classification and regression tree (CART) model of glycosaminoglycans (GAGs) for the differential diagnosis of Mucopolysaccharidoses (MPS). Two-dimensional electrophoresis and liquid chromatography-tandem mass spectr...

Gene Expression Classification of Lung Adenocarcinoma into Molecular Subtypes.

IEEE/ACM transactions on computational biology and bioinformatics
As one of the most common malignancies in the world, lung adenocarcinoma (LUAD) is currently difficult to cure. However, the advent of precision medicine provides an opportunity to improve the treatment of lung cancer. Subtyping lung cancer plays an ...

Deep learning can see the unseeable: predicting molecular markers from MRI of brain gliomas.

Clinical radiology
This paper describes state-of-the-art methods for molecular biomarker prediction utilising magnetic resonance imaging. This review paper covers both classical machine learning approaches and deep learning approaches to identifying the predictive feat...

Deep convolutional neural networks for accurate somatic mutation detection.

Nature communications
Accurate detection of somatic mutations is still a challenge in cancer analysis. Here we present NeuSomatic, the first convolutional neural network approach for somatic mutation detection, which significantly outperforms previous methods on different...