AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasm Recurrence, Local

Showing 31 to 40 of 375 articles

Clear Filters

Machine Learning Prediction of Early Recurrence in Gastric Cancer: A Nationwide Real-World Study.

Annals of surgical oncology
BACKGROUND: Patients with gastric cancer (GC) who experience early recurrence (ER) within 2 years postoperatively have poor prognoses. This study aimed to analyze and predict ER after curative surgery for patients with GC using machine learning (ML) ...

Bidirectional recurrent neural network approach for predicting cervical cancer recurrence and survival.

Scientific reports
Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence. The chances of treating the Recurrence of cervic...

Construction of a random survival forest model based on a machine learning algorithm to predict early recurrence after hepatectomy for adult hepatocellular carcinoma.

BMC cancer
BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) exhibits a propensity for early recurrence following liver resection, resulting in a bleak prognosis. At present, majority of the predictive models for the early postoperative recurrence of HCC rely...

Development of two machine learning models to predict conversion from primary HER2-0 breast cancer to HER2-low metastases: a proof-of-concept study.

ESMO open
BACKGROUND: HER2-low expression has gained clinical relevance in breast cancer (BC) due to the availability of anti-HER2 antibody-drug conjugates for patients with HER2-low metastatic BC. The well-reported instability of HER2-low status during diseas...

Automated Identification of Breast Cancer Relapse in Computed Tomography Reports Using Natural Language Processing.

JCO clinical cancer informatics
PURPOSE: Breast cancer relapses are rarely collected by cancer registries because of logistical and financial constraints. Hence, we investigated natural language processing (NLP), enhanced with state-of-the-art deep learning transformer tools and la...

Utility of a Large Language Model for Extraction of Clinical Findings from Healthcare Data following Lung Ablation: A Feasibility Study.

Journal of vascular and interventional radiology : JVIR
To assess the feasibility of utilizing a large language model (LLM) in extracting clinically relevant information from healthcare data in patients who have undergone microwave ablation for lung tumors. In this single-center retrospective study, radio...

Leveraging survival analysis and machine learning for accurate prediction of breast cancer recurrence and metastasis.

Scientific reports
Breast cancer, with its high incidence and mortality globally, necessitates early prediction of local and distant recurrence to improve treatment outcomes. This study develops and validates predictive models for breast cancer recurrence and metastasi...

Multimodal integration using a machine learning approach facilitates risk stratification in HR+/HER2- breast cancer.

Cell reports. Medicine
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common type of breast cancer, with continuous recurrence remaining an important clinical issue. Current relapse predictive models in H...

Comparative analysis of deep learning and radiomic signatures for overall survival prediction in recurrent high-grade glioma treated with immunotherapy.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significa...

Predicting early recurrence in locally advanced gastric cancer after gastrectomy using CT-based deep learning model: a multicenter study.

International journal of surgery (London, England)
BACKGROUND: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Predicting early recurrence may help determine treatment strategies for LAGC. The goal is to d...