AIMC Topic: Neoplasm Recurrence, Local

Clear Filters Showing 31 to 40 of 400 articles

Development of a deep learning system for predicting biochemical recurrence in prostate cancer.

BMC cancer
BACKGROUND: Biochemical recurrence (BCR) occurs in 20%-40% of men with prostate cancer (PCa) who undergo radical prostatectomy. Predicting which patients will experience BCR in advance helps in formulating more targeted prostatectomy procedures. Howe...

Machine learning prediction of breast cancer local recurrence localization, and distant metastasis after local recurrences.

Scientific reports
Local recurrences (LR) can occur within residual breast tissue, chest wall, skin, or newly formed scar tissue. Artificial intelligence (AI) technologies can extract a wide range of tumor features from large datasets helping in oncological decision-ma...

Predicting early recurrence in locally advanced gastric cancer after gastrectomy using CT-based deep learning model: a multicenter study.

International journal of surgery (London, England)
BACKGROUND: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Predicting early recurrence may help determine treatment strategies for LAGC. The goal is to d...

Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: This multicenter study aimed to develop and validate a multiscale deep learning radiomics nomogram for predicting recurrence-free survival (RFS) in patients with pancreatic ductal adenocarcinoma (PDAC).

Preoperative blood and CT-image nutritional indicators in short-term outcomes and machine learning survival framework of intrahepatic cholangiocarcinoma.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND&AIMS: Intrahepatic cholangiocarcinoma (iCCA) is aggressive with limited treatment and poor prognosis. Preoperative nutritional status assessment is crucial for predicting outcomes in patients. This study aimed to compare the predictive cap...

Leveraging survival analysis and machine learning for accurate prediction of breast cancer recurrence and metastasis.

Scientific reports
Breast cancer, with its high incidence and mortality globally, necessitates early prediction of local and distant recurrence to improve treatment outcomes. This study develops and validates predictive models for breast cancer recurrence and metastasi...

Can we rely on machine learning algorithms as a trustworthy predictor for recurrence in high-grade glioma? A systematic review and meta-analysis.

Clinical neurology and neurosurgery
Early prediction of recurrence in high-grade glioma (HGG) is critical due to its aggressive nature and poor prognosis. Distinguishing true recurrence from treatment-related changes, such as radionecrosis, is a major diagnostic challenge. Machine lear...

Multimodal integration using a machine learning approach facilitates risk stratification in HR+/HER2- breast cancer.

Cell reports. Medicine
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most common type of breast cancer, with continuous recurrence remaining an important clinical issue. Current relapse predictive models in H...

Comparative analysis of deep learning and radiomic signatures for overall survival prediction in recurrent high-grade glioma treated with immunotherapy.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significa...

Machine Learning Prediction of Early Recurrence in Gastric Cancer: A Nationwide Real-World Study.

Annals of surgical oncology
BACKGROUND: Patients with gastric cancer (GC) who experience early recurrence (ER) within 2 years postoperatively have poor prognoses. This study aimed to analyze and predict ER after curative surgery for patients with GC using machine learning (ML) ...