AIMC Topic: Neoplastic Stem Cells

Clear Filters Showing 1 to 10 of 37 articles

Machine learning-based characterization of stemness features and construction of a stemness subtype classifier for bladder cancer.

BMC cancer
BACKGROUND: Bladder cancer (BLCA) is a highly heterogeneous disease that presents challenges in predicting prognosis and treatment response. Cancer stem cells are key drivers of tumor development, progression, metastasis, and treatment resistance. Th...

Nano biosensor unlocks tumor derived immune signals for the early detection of ovarian cancer.

Biosensors & bioelectronics
Ovarian cancer is a critical health issue for women nowadays. Its impact is significant because of its high mortality rate (324,603 worldwide), late-stage diagnosis and poor survival rate. Lack of screening tests, vague symptoms, misdiagnosis, and ag...

Integrating single cell analysis and machine learning methods reveals stem cell-related gene S100A10 as an important target for prediction of liver cancer diagnosis and immunotherapy.

Frontiers in immunology
BACKGROUND: Hepatocellular carcinoma (LIHC) poses a significant health challenge worldwide, primarily due to late-stage diagnosis and the limited effectiveness of current therapies. Cancer stem cells are known to play a role in tumor development, met...

Targeting liver cancer stem cells: the prognostic significance of MRPL17 in immunotherapy response.

Frontiers in immunology
BACKGROUND: Liver hepatocellular carcinoma (LIHC) ranks as the foremost cause of cancer-related deaths worldwide, and its early detection poses considerable challenges. Current prognostic indicators, including alpha-fetoprotein, have notable limitati...

Machine learning models reveal ARHGAP11A's impact on lymph node metastasis and stemness in NSCLC.

BioFactors (Oxford, England)
Most patients with non-small cell lung cancer (NSCLC) are diagnosed at an advanced stage of the disease, which complicates treatment due to a heightened risk of metastasis. Consequently, the timely identification of biomarkers associated with lymph n...

Unmasking Neuroendocrine Prostate Cancer with a Machine Learning-Driven Seven-Gene Stemness Signature That Predicts Progression.

International journal of molecular sciences
Prostate cancer (PCa) poses a significant global health challenge, particularly due to its progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study developed and validated a stemness-associated gene signature using adv...

Integrated machine learning algorithms identify KIF15 as a potential prognostic biomarker and correlated with stemness in triple-negative breast cancer.

Scientific reports
Cancer stem cells (CSCs) have the potential to self-renew and induce cancer, which may contribute to a poor prognosis by enabling metastasis, recurrence, and therapy resistance. Hence, this study was performed to identify the association between CSC-...

Development of a prognostic model for NSCLC based on differential genes in tumour stem cells.

Scientific reports
Non-small cell lung cancer (NSCLC) constitutes a significant portion of lung cancers and cytotoxic drugs (e.g. cisplatin) are currently the first-line treatment. However, NSCLC has developed resistance to this drug, which limits the therapeutic effec...