AIMC Topic: Nomograms

Clear Filters Showing 61 to 70 of 373 articles

Machine learning-based bulk RNA analysis reveals a prognostic signature of 13 cell death patterns and potential therapeutic target of SMAD3 in acute myeloid leukemia.

BMC cancer
BACKGROUND: Dysregulation or abnormality of the programmed cell death (PCD) pathway is closely related to the occurrence and development of many tumors, including acute myeloid leukemia (AML). Studying the abnormal characteristics of PCD pathway-rela...

A diagnostic model for sepsis using an integrated machine learning framework approach and its therapeutic drug discovery.

BMC infectious diseases
BACKGROUND: Sepsis remains a life-threatening condition in intensive care units (ICU) with high morbidity and mortality rates. Some biomarkers commonly used in clinic do not have the characteristics of rapid and specific growth and rapid decline afte...

Developing a nomogram model for predicting non-obstructive azoospermia using machine learning techniques.

Scientific reports
Azoospermia, defined by the absence of sperm in the ejaculate, manifests as obstructive azoospermia (OA) or non-obstructive azoospermia (NOA). Reliable predictive models utilizing biomarkers could aid in clinical decision-making. This study included ...

Prediction of mortality risk in critically ill patients with systemic lupus erythematosus: a machine learning approach using the MIMIC-IV database.

Lupus science & medicine
OBJECTIVE: Early prediction of long-term outcomes in patients with systemic lupus erythematosus (SLE) remains a great challenge in clinical practice. Our study aims to develop and validate predictive models for the mortality risk.

Interpretable machine learning-derived nomogram model for early detection of persistent diarrhea in Salmonella typhimurium enteritis: a propensity score matching based case-control study.

BMC infectious diseases
BACKGROUND: Salmonella typhimurium infection is a considerable global health concern, particularly in children, where it often leads to persistent diarrhea. This condition can result in severe health complications including malnutrition and cognitive...

A Hybrid Machine Learning CT-Based Radiomics Nomogram for Predicting Cancer-Specific Survival in Curatively Resected Colorectal Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a computed tomography-based radiomics nomogram for cancer-specific survival (CSS) prediction in curatively resected colorectal cancer (CRC), and its performance was compared with the American Joint Co...

Artificial intelligence links CT images to pathologic features and survival outcomes of renal masses.

Nature communications
Treatment decisions for an incidental renal mass are mostly made with pathologic uncertainty. Improving the diagnosis of benign renal masses and distinguishing aggressive cancers from indolent ones is key to better treatment selection. We analyze 132...

Deep learning radiomics nomogram for preoperatively identifying moderate-to-severe chronic cholangitis in children with pancreaticobiliary maljunction: a multicenter study.

BMC medical imaging
BACKGROUND: Long-term severe cholangitis can lead to dense adhesions and increased fragility of the bile duct, complicating surgical procedures and elevating operative risk in children with pancreaticobiliary maljunction (PBM). Consequently, preopera...

Machine learning-random forest model was used to construct gene signature associated with cuproptosis to predict the prognosis of gastric cancer.

Scientific reports
Gastric cancer (GC) is one of the most common tumors; one of the reasons for its poor prognosis is that GC cells can resist normal cell death process and therefore develop distant metastasis. Cuproptosis is a novel type of cell death and a limited nu...

Deep learning and radiomics for gastric cancer serosal invasion: automated segmentation and multi-machine learning from two centers.

Journal of cancer research and clinical oncology
OBJECTIVE: The objective of this study is to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model. This approach is intended to address the limitations of manual segmentation, which is known to...