AIMC Topic: Obesity

Clear Filters Showing 41 to 50 of 232 articles

Applying machine learning approaches for predicting obesity risk using US health administrative claims database.

BMJ open diabetes research & care
INTRODUCTION: Body mass index (BMI) is inadequately recorded in US administrative claims databases. We aimed to validate the sensitivity and positive predictive value (PPV) of BMI-related diagnosis codes using an electronic medical records (EMR) clai...

Maternal dietary practices during pregnancy and obesity of neonates: a machine learning approach towards hierarchical and nested relationships in a Tibet Plateau cohort study.

The British journal of nutrition
Studies on obesity and risk factors from a life-course perspective among residents in the Tibet Plateau with recent economic growth and increasing obesity are important and urgently needed. The birth cohort in this area provides a unique opportunity ...

Development and validation of cardiometabolic risk predictive models based on LDL oxidation and candidate geromarkers from the MARK-AGE data.

Mechanisms of ageing and development
The predictive value of the susceptibility to oxidation of LDL particles (LDLox) in cardiometabolic risk assessment is incompletely understood. The main objective of the current study was to assess its relationship with other relevant biomarkers and ...

Deep Learning-Based Obesity Identification System for Young Adults Using Smartphone Inertial Measurements.

International journal of environmental research and public health
Obesity recognition in adolescents is a growing concern. This study presents a deep learning-based obesity identification framework that integrates smartphone inertial measurements with deep learning models to address this issue. Utilizing data from ...

Obesity prediction: Novel machine learning insights into waist circumference accuracy.

Diabetes & metabolic syndrome
AIMS: This study aims to enhance the precision of obesity risk assessments by improving the accuracy of waist circumference predictions using machine learning techniques.

Metabolic dysfunctions predict the development of Alzheimer's disease: Statistical and machine learning analysis of EMR data.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: The incidence of Alzheimer's disease (AD) and obesity rise concomitantly. This study examined whether factors affecting metabolism, race/ethnicity, and sex are associated with AD development.

Identification of COL3A1 as a candidate protein involved in the crosstalk between obesity and diarrhea using quantitative proteomics and machine learning.

European journal of pharmacology
BACKGROUND: Increasing epidemiologic studies have shown a positive correlation between obesity and chronic diarrhea. Nevertheless, the precise etiology remains uncertain.

Identification of Psychological Treatment Dropout Predictors Using Machine Learning Models on Italian Patients Living with Overweight and Obesity Ineligible for Bariatric Surgery.

Nutrients
According to the main international guidelines, patients with obesity and psychiatric/psychological disorders who cannot be addressed to surgery are recommended to follow a nutritional approach and a psychological treatment. A total of 94 patients (T...

Machine learning allows robust classification of visceral fat in women with obesity using common laboratory metrics.

Scientific reports
The excessive accumulation and malfunctioning of visceral adipose tissue (VAT) is a major determinant of increased risk of obesity-related comorbidities. Thus, risk stratification of people living with obesity according to their amount of VAT is of c...