AIMC Topic: Predictive Value of Tests

Clear Filters Showing 21 to 30 of 2176 articles

Research on noninvasive electrophysiologic imaging based on cardiac electrophysiology simulation and deep learning methods for the inverse problem.

BMC cardiovascular disorders
BACKGROUND: The risk stratification and prognosis of cardiac arrhythmia depend on the individual condition of patients, while invasive diagnostic methods may be risky to patient health, and current non-invasive diagnostic methods are applicable to fe...

Fast and automatic coronary artery segmentation using nnU-Net for non-contrast enhanced magnetic resonance coronary angiography.

The international journal of cardiovascular imaging
Non-contrast enhanced magnetic resonance coronary angiography (MRCA) is a promising coronary heart disease screening modality. However, its clinical application is hindered by inherent limitations, including low spatial resolution and insufficient co...

Optimising coronary imaging decisions with machine learning: an external validation study.

Open heart
BACKGROUND: Exclusion of coronary stenosis in individuals with suggestive symptoms is challenging. Cardiac CT or coronary angiography is often used but is inefficient and costly and involves risks. Sex-stratified algorithms based on electronic health...

Predicting isolated impaired glucose tolerance without oral glucose tolerance test using machine learning in Chinese Han men.

Frontiers in endocrinology
BACKGROUND: Isolated Impaired Glucose Tolerance (I-IGT) represents a specific prediabetic state that typically requires a standardized oral glucose tolerance test (OGTT) for diagnosis. This study aims to predict glucose tolerance status in Chinese Ha...

Deep learning-based post hoc denoising for 3D volume-rendered cardiac CT in mitral valve prolapse.

The international journal of cardiovascular imaging
We hypothesized that deep learning-based post hoc denoising could improve the quality of cardiac CT for the 3D volume-rendered (VR) imaging of mitral valve (MV) prolapse. We aimed to evaluate the quality of denoised 3D VR images for visualizing MV pr...

Comparison of machine learning models with conventional statistical methods for prediction of percutaneous coronary intervention outcomes: a systematic review and meta-analysis.

BMC cardiovascular disorders
INTRODUCTION: Percutaneous coronary intervention (PCI) has been the main treatment of coronary artery disease (CAD). In this review, we aimed to compare the performance of machine learning (ML) vs. logistic regression (LR) models in predicting differ...

Combining Ultrasound Imaging and Molecular Testing in a Multimodal Deep Learning Model for Risk Stratification of Indeterminate Thyroid Nodules.

Thyroid : official journal of the American Thyroid Association
Indeterminate cytology (Bethesda III and IV) represents 15-30% of biopsied thyroid nodules and require additional diagnostic testing. Molecular testing (MT) is a commonly used diagnostic tool that evaluatesmalignancy risk through next generation seq...

Prediction of early recurrence in primary central nervous system lymphoma based on multimodal MRI-based radiomics: A preliminary study.

European journal of radiology
OBJECTIVES: To evaluate the role of multimodal magnetic resonance imaging radiomics features in predicting early recurrence of primary central nervous system lymphoma (PCNSL) and to investigate their correlation with patient prognosis.