AIMC Topic: Prodromal Symptoms

Clear Filters Showing 1 to 10 of 18 articles

Brain metabolic imaging-based model identifies cognitive stability in prodromal Alzheimer's disease.

Scientific reports
The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for inc...

Multiclass classification of Alzheimer's disease prodromal stages using sequential feature embeddings and regularized multikernel support vector machine.

NeuroImage
The detection of patients in the cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) stages of neurodegeneration is crucial for early treatment interventions. However, the heterogeneity of MCI data samples poses a cha...

Automated linguistic analysis in youth at clinical high risk for psychosis.

Schizophrenia research
Identifying individuals at clinical high risk for psychosis (CHRP) is crucial for preventing psychosis and improving the prognosis for schizophrenia. Individuals at CHR-P may exhibit mild forms of formal thought disorder (FTD), making it possible to ...

Using brain structural neuroimaging measures to predict psychosis onset for individuals at clinical high-risk.

Molecular psychiatry
Machine learning approaches using structural magnetic resonance imaging (sMRI) can be informative for disease classification, although their ability to predict psychosis is largely unknown. We created a model with individuals at CHR who developed psy...

Externally validated deep learning model to identify prodromal Parkinson's disease from electrocardiogram.

Scientific reports
Little is known about electrocardiogram (ECG) markers of Parkinson's disease (PD) during the prodromal stage. The aim of the study was to build a generalizable ECG-based fully automatic artificial intelligence (AI) model to predict PD risk during the...

Prediction of tau accumulation in prodromal Alzheimer's disease using an ensemble machine learning approach.

Scientific reports
We developed machine learning (ML) algorithms to predict abnormal tau accumulation among patients with prodromal AD. We recruited 64 patients with prodromal AD using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Supervised ML approa...

Preictal state detection using prodromal symptoms: A machine learning approach.

Epilepsia
A reliable identification of a high-risk state for upcoming seizures may allow for preemptive treatment and improve the quality of patients' lives. We evaluated the ability of prodromal symptoms to predict preictal states using a machine learning (ML...

Predicting the individual risk of psychosis conversion in at-risk mental state (ARMS): a multivariate model reveals the influence of nonpsychotic prodromal symptoms.

European child & adolescent psychiatry
To improve the prediction of the individual risk of conversion to psychosis in UHR subjects, by considering all CAARMS' symptoms at first presentation and using a multivariate machine learning method known as logistic regression with Elastic-net shri...

The Early Psychosis Screener (EPS): Quantitative validation against the SIPS using machine learning.

Schizophrenia research
Machine learning techniques were used to identify highly informative early psychosis self-report items and to validate an early psychosis screener (EPS) against the Structured Interview for Psychosis-risk Syndromes (SIPS). The Prodromal Questionnaire...

AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: Defining a summary measure.

NeuroImage
Utilizing [18F]-AV-1451 tau positron emission tomography (PET) as an Alzheimer disease (AD) biomarker will require identification of brain regions that are most important in detecting elevated tau pathology in preclinical AD. Here, we utilized an uns...